21 apr 2025 free fermion gas . L20-1

The Free Fermion Gas and Electrons in Metals

e The system: Formally, we will treat a gas of IV free fermions in thermal equilibrium at temperature 7" in a
box of volume V. Physically, however, this can be used as a model for the conducting electrons inside a metal
(for which the mutual interactions can often be neglected if we consider them as cancelled by the presence of
the nuclei); in this case, the energies below are all to be considered as just representing the kinetic energies
above the bottom of the conduction band.

e Goal: We want to study properties of the occupation number distribution N(e,) as a function of energy,
and use it to calculate the mean energy and heat capacity at low temperatures. If the gas is used to model
conduction electrons in a metal, this C'}, will be their contribution to the total value for the solid.

e Setup: For convenience, we will model the system using a grand canonical ensemble. Thus, in principle,
the total particle number is not fixed. However, in the thermodynamic limit NV is very strongly peaked
around N, so if we find N (3, ) we can substitute the fixed N for N in this expression and invert it to find
w(B, N), which can then be used to calculate other thermodynamic quantities.

e Starting Point: For fermions the mean occupation number in a single-particle state of energy € is given by
the Fermi function Ng(e€) derived earlier, and for the density of states we use the same expression we used
earlier for free massive bosons, using g, = 2 for the number of spin states of an electron,
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Notice that in the 7' — oo limit F'(¢) approximates the Maxwell-Boltzmann distribution, and at any 7" # 0
the value of the Fermi function at € = p is N(u) = 3. Using these Np(e) and g(e) the starting point for
thermodynamical calculations is then
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Zero-Temperature Quantities

e Occupation-number distribution: At T'= 0 the mean number of particles above in the single-particle state
a becomes a step function whose value equals 1 for €, < u, and 0 for €, > (and by continuity we still set
N(p) = 3). Thus, gy = p(0) cannot be zero and we wish to find its value. Notice that, contrary to what

happens in the case of bosons, in this case 0 < N, < 1 for any 8 and z, so the value of z is now unrestricted.

e Fermi energy and temperature: At T = 0 we can calculate exactly the sum for the mean number of particles
as a function of p; setting then N = N gives an explicit expression for p, in terms of V. For electrons,
since up to € = p, each state is occupied by exactly one electron,
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From N (e) we see that at T > Ty = €p/k,, thermal fluctuations start populating energy levels above ep = .

e Mean energy: Using the Fermi energy, a similar calculation for the mean energy gives now

_ Ho 3 E
E:/O deeg(e):g,uoN, or N €= er (Notice that € > 3 €p) .

Small-Temperature Quantities

o Useful integrals: When evaluating the finite-temperature corrections for quantities such as N and E, we
will need to calculate integrals of the following form, for some function K (€) (in practice, g(e) or € g(e)):
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For low temperatures T' < Ty = ep/k, we can evaluate I(u,T) as a Sommerfeld series expansion around
T =0, where I(p,0) = f(f de K (€). To proceed, introduce the variable z := 5(u — €) € (—o0, ) and write
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where we have separated the parts with > 0 and « < 0, used the identity 1/(e™ +1) =1 —1/(e* + 1)
in the first term and replaced x — —z in the second one, and restored € in the first resulting integral. The
second integral can be extended to +oo with an excellent approximation as 7' — 0. The second and third
integrals then become similar, and expanding terms in powers of T' (notice that du/dT # 0) we get
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e Finite-temperature corrections: The leading-order corrections to quantities such as y and E for T close to 0
can be obtained from the first term after the 7' = 0 one in the low-temperature expansion of the corresponding
I(p,T). The expressions to use for N and F are I(u,T) with K(€) = g(e) and € g(€), respectively, or

N= / Celemp 11 M)ﬂ +1’ E= / CelemB 11 M)ﬂ +1°

Thermodynamics

e Chemical potential: We expand N (T, ) and defining Ty := ep/k, equate the expression to N to find
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e Heat capacity: The mean energy is given by I(u,T) with K(e) = eg(e), or
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We see therefore that Cy, y — 0 as T' — 0, consistently with the third law of thermodynamics.

e Pressure equation of state: [See the lecture notes on the effects of quantum statistics. It leads to a fermion
degeneracy pressure which has applications, e.g., to the structure of white dwarf stars and neutron stars.]

Reading

e Course textbook: Kennett, Ch 8, §§ 8.1-8.2.
e Other books: Chandler, § 4.5; Halley, end of Ch 5; Huang, Ch 16; Mattis & Swendsen, Ch 6 (first half);
Pathria & Beale, Ch 8 (esp. § 8.1); Plischke & Bergersen, §§ 12.2.4-12.2.5; Reif, § 9.16; Schwabl, § 4.3.



