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The Free Boson Gas and Bose-Einstein Condensation

• Starting point: For non-interacting bosons the grand partition function and mean occupation numbers are

Zg =
∏
α

1

1− e−(εα−µ)β
, N̄α =

1

eβ(εα−µ) − 1
=

1

eβεαz−1 − 1
,

where the single-particle energy is εα = h̄2k2α/2m for massive particles, cpα for massless particles, and the
value of the chemical potential µ or fugacity z := eβµ are to be determined from the condition that a sum
over all 1-particle states gives

∑
α N̄α = N . What we can say in general is that, from the fact that N̄α is

positive and finite even for the smallest εα we obtain that e−βµ > 1, or 0 < z < 1; in particular, µ < 0.

• Goal: Study the properties of this gas at low T . We’ll see that there is a phase transition at some T = Tc,
below which the gas has two components, and look at the behavior of thermodynamical quantities there.

Density of States

• Idea: Overall quantities such as N̄ and Ē are obtained as sums over 1-particle states of the system but can
be converted into sums, possibly approximated by integrals, over energy levels εα, provided we know their
degeneracies g(εα), or the density of states g(ε) giving the number g(ε) dε of states in the energy interval dε.

• Approximating the sum over states: A general sum
∑
α f(εα) over states is well approximated by an

integral if f varies slowly with ε, and in that case g(ε) is the function such that
∑
α f(εα) ≈

∫∞
0

dε g(ε) f(ε).

If the label α↔ (~k, γ), where ki = 2πni/Li, n ∈ Z, and γ is an internal parameter with gs possible values,∑
α

f(εα) ≈
∑
γ

∫
IR3

d3n f(ε(n)) =
gsV

8π3

∫
IR3

d3k f(ε(k)) =
gsV

4π2

(
2m

h̄2

)3/2∫ ∞
0

dε
√
ε f(ε) ,

where in the last step we have used the fact that for free massive particles ε = h̄2k2/2m. We conclude that

g(ε) =
gsV

4π2

(
2m

h̄2

)3/2√
ε ≡ 2π gsV

(
2m

h2

)3/2√
ε .

Relating Chemical Potential to Temperature

• Particle number as a sum over states: If we replace the sum N̄ =
∑
α N̄α over particle states by an integral

over all energies using the density of states and set N̄ = N , we get that N is approximately given by

N ≈
∫ ∞
0

dε g(ε) N̄(ε) = 2πV

(
2m

h2

)3/2∫ ∞
0

√
εdε

eβεz−1 − 1
=

2V√
π

(2πmk
B
T

h2

)3/2∫ ∞
0

√
x dx

exz−1 − 1
,

where x := βε and we have set gs = 1 for simplicity. This last integral is an example of Bose-Einstein
function

gl(z) :=
1

Γ(l)

∫ ∞
0

xl−1 dx

exz−1 − 1
=

z

Γ(l)

∫ ∞
0

e−x xl−1 dx

1− z e−x
=

∞∑
n=1

zn

Γ(l)

∫ ∞
0

dxxl−1 e−nx =

∞∑
n=1

zn

nl
,

with l = 3
2 . Then, if we define λ :=

√
h2/2πmk

B
T as usual and using Γ(l) = (l − 1) Γ(l − 1), Γ( 1

2 ) =
√
π,

N = V λ−3 g3/2(z) [or δ := ρ λ3 = g3/2(z)] .

Some relevant properties of gl(z), defined for 0 < z < 1, are that it is a monotonically increasing function of z,
which attains a finite maximum value in this range at z = 1 where gl(1) = ζ(l), and that g′l(z) = z−1 gl−1(z).
Therefore, the maximum value of g3/2(z) is g3/2(1) ≈ 2.612, while its slope g′l(z) is infinite there. [Add plot.]

• Decreasing the temperature: As T decreases, to keep the value of N = V λ−3 g3/2(z) constant g3/2(z)
must increase, which implies that z must increase towards 1 (or µ→ 0). But g3/2(z) cannot increase beyond

g3/2(1) while λ−3 keeps decreasing with T , so there is a finite T below which the condition N = V λ−3 g3/2(z)

cannot be satisfied. The problem arose from the way we treated the ~k = 0 state, since N̄0 →∞ as z → 1.

• Better approximation: Treat the contribution to
∑
~k N̄~k from the ~k = 0 state, which blows up, separately:

N = N̄0 +
∑
~k 6=~0

N̄~k =
z

1− z
+

2V√
π

(2πmk
B
T

h2

)3/2 ∫ ∞
0

√
xdx

exz−1 − 1
=

z

1− z
+
V

λ3
g3/2(z) .
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Bose-Einstein Condensation

• Idea: The expression for N/V we get from the above result has a lowest-energy contribution N̄0/V and a
“normal” contribution N̄n/V . The latter is at most equal to the value one gets using z = 1. But this means
that as T decreases or N increases, at some point the normal term will not be able to accommodate all N
particles, and particles start condensating in the ground state. This is an example of phase transition.

• Critical temperature: Bose-Einstein condensation sets in at a Tc such that

N

V
= λ−3 g3/2(1) = ζ( 3

2 )λ−3 , which gives Tc ≈
3.31 h̄2

mk
B

ρ2/3.

To determine the behavior of thermodynamical quantities we start with the mean energy.

•Mean Energy: The mean number of particles N̄α in each state was obtained from Zg =
∏
α[1−e−(εα−µ)β ]−1,

from which we can also get Ē = −∂ lnZg/∂β|βµ. Alternatively, we can calculate the mean energy using

Ē =
∑
α

εα N̄α ≈
∫ ∞
0

dε g(ε) ε N̄(ε) =

∫ ∞
0

dε g(ε)
ε

eβεz−1 − 1

(notice that now we can replace the sum with an integral without running into a problem with the k = 0
term) and, introducing again the variable x := βε,

Ē =
V√
2π2

(mk
B
T

h̄2

)3/2
k

B
T

∫ ∞
0

x3/2 dx

exz−1 − 1
=

3

2
λ−3 k

B
T V g5/2(z) .

• Heat capacity: According to the definition CV = ∂Ē/∂T |V,N , but the energy expression above is of the

form Ē(T, V, z) = Ē(T, V, z(T, V,N)), and varying T in it while keeping N constant means calculating

CV =
∂Ē

∂T

∣∣∣
V,z

+
∂Ē

∂z

∣∣∣
T,V

∂z

∂T

∣∣∣
V,N

.

The pieces that go into the calculation are

∂Ē

∂T

∣∣∣
V,z

=
15

4
λ−3k

B
V g5/2(z) ,

∂Ē

∂z

∣∣∣
T,V

=
3

2
λ−3 k

B
T V z−1 g3/2(z) ,

∂z

∂T

∣∣∣
V,N

= − 3z

2T

g3/2(z)

g1/2(z)
(from differentiating N = V λ−3g3/2(z), for T > Tc) ,

and substituting into the heat capacity we finally get that [add plots of N̄0, N̄n and CV ]

CV =
3

4
λ−3k

B
V

(
5 g5/2(z)− 3

g 2
3/2(z)

g1/2(z)

)
.

It is easy to check that in the T → 0 limit (λ→∞, z → 1), ∂z/∂T |V,N ≈ 0 and CV ≈ ∂Ē/∂T |V,z vanishes

as T 3/2, consistently with the third law; and as T → ∞ (λ → 0, z → 0), when all gl(z) ≈ z + O(z2) with
z ≈ ρ λ3, the heat capacity approaches 3

2 kB
N , consistently with the principle of equipartition.

• Applications: Well-known ones are related to liquid-He superfluidity and superconductivity, phenomena
in which particles (He atoms and Cooper pairs) condense in the ground state and the systems exhibit zero
viscosity and electrical resistivity, respectively. Each of those systems has interesting features of its own, as
3He behaves differently from 4He and those fluids are not ideal gases. Applications to cosmology include
proposals for dark matter and dark energy.

Reading

• Course textbook: Kennett, §§ 9.1–9.3.
• Other textbooks: Halley, pp 74–78; Mattis & Swendsen, §§ 5.8–5.10; Pathria & Beale, Chapter 7;
Plischke & Bergersen, § 11.1; Schwabl, § 4.4.


