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The Free Quantum Molecular Gas

General Considerations

• Idea: We want to calculate the contribution to the heat capacity of a molecular gas arising from the fact
that energy can be stored in the internal degrees of freedom of each molecule. The dynamics of the centers
of mass of the N molecules will be treated classically, but, as we will see, we would not get results consistent
with observations unless we treat the internal degrees of freedom quantum mechanically.

• Molecular Hamiltonian: If the n atoms in each molecule are identical (the treatment can be generalized
to the case of different atoms), and T is low enough that the atoms are only slightly displaced from their
equilibrium positions ~qi = ~q ∗i (i = 1, ..., n) and the probability of electron transitions to higher energy states

can be neglected, we can use H =
∑N
I=1H1(q(I), p(I)), with single-molecule Hamiltonian

H1(q, p) =

n∑
i=1

~p 2
i

2m
+ V (~q1, ..., ~qn) ,

V (~q1, ..., ~qn) = V ∗ + 1
2

n∑
i, j=1

3∑
α, β=1

∂2V

∂qi,α∂qj,β

∣∣∣∣
q=q∗

ui,α uj,β +O(u3) ,

where V ∗ is the equilibrium value of the molecular potential energy, and the ui,α := qi,α − q∗i,α are the
deviations of the configuration variables from their equilibrium values. If we now identify the 3n normal
modes for the system by diagonalizing the matrix ∂2V/∂qi,α∂qj,β , then in adapted coordinates ũs and p̃s,

H1 = V ∗ +

3n∑
s=1

[
1

2m
p̃ 2
s +

Ks

2
ũ 2
s

]
.

• Heat capacity: This single-molecule Hamiltonian H1 is a sum of terms depending separately on center-
of-mass, molecular orientation and deformation variables, meaning that the translational, rotational and
vibrational degrees of freedom of each molecule are uncoupled. Then, general results imply that the heat
capacity will be, both classically and quantum mechanically, a sum of three corresponding terms,

Cmol = Ct + Cr + Cv .

Furthermore, the small-perturbation Hamiltonian is a sum of quadratic terms, so classically, based on the
equipartition theorem, we would expect the contribution from each molecule to the heat capacity to be
C1 = 1

2 (6n− 3− r) k
B
, where we have subtracted from the 6n terms in H1 the ones for which Ks = 0, i.e.,

the 3 overall translations and the r effective rotations. This would imply that the systems does not satisfy
the third law, and it is not what is actually measured experimentally.

Diatomic molecule: Vibrational degree of freedom

• Diatomic molecule in general: In this case, n = 2 and r = 2 (the third rotation, around the axis, corresponds
to no change in the molecule), so the number of terms that contributes to H1 is 6n − 3 − r = 7 (3 overall
translation momenta, 2 from the vibrational p and u, and 2 from rotational angles) and classically we expect
to find a molecular contribution to the mean energy of ε̄ = ( 3

2 + 2
2 + 2

2 ) k
B
T = 7

2 kB
T .

• Classically: For small-amplitude oscillations, the vibrational degree of freedom behaves like a simple
harmonic oscillator. If ω is its angular frequency, the vibrational part of the 1-molecule partition function is

Z
(cm)
1,v =

∫
dq dp

h
e−β(p2/2µ+µω2q2/2) =

k
B
T

h̄ω

(µ is the reduced mass), consistently with the principle of equipartition, and therefore, for N molecules,

C (cm)
v = Nk

B
.
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• Quantum mechanically: The states of the simple harmonic oscillator are quantized. If we use n to label
the states, the corresponding energy eigenvalues for a single oscillator are εn = (n+ 1

2 ) h̄ω and

Z
(qm)
1,v =

∑
n

e−βεn =

∞∑
n=0

e−β (n+1/2) h̄ω =
e−βh̄ω/2

1− e−βh̄ω
,

which goes like k
B
T/h̄ω as T →∞. Therefore we get

ε̄ (qm)
v = − ∂

∂β
lnZ

(qm)
1,v = 1

2 h̄ω + h̄ω
e−βh̄ω

1− e−βh̄ω

(the terms correspond to zero-point energy and thermal fluctuations, respectively) and, for N oscillators,

C (qm)
v = N

∂ ε̄
(qm)
v

∂T
= Nk

B

( h̄ω
k

B
T

)2 e−βh̄ω

(1− e−βh̄ω)2
,

which vanishes as T → 0, consistently with the third law, and approaches Nk
B

[expand the exponentials]
for T � θv = h̄ω/k

B
, a temperature usually in the thousands of degrees (810 K for Cl2 ... 6140 K for H2).

Diatomic molecule: Rotational degrees of freedom

• Classically: The rotational part of the Hamiltonian only has a kinetic energy term,

H1,rot =
1

2I

(
p2
θ +

p2
φ

sin2 θ

)
=
L2

2I
,

so, by a calculation of the same type as the previous ones,

Z
(cm)
1,rot =

2I k
B
T

h̄2 and C (cm)
r = Nk

B
.

consistently with the principle of equipartition but not with the third law.

• Quantum mechanically: The rotational states can be labelled by a non-negative integer l and an integer
m = −l, ..., l, such that the square of the angular momentum vector is l (l + 1) h̄2. Therefore,

Z
(qm)
1,rot =

∞∑
l=0

l∑
m=−l

e−βh̄
2l(l+1)/2I =

∞∑
l=0

(2l + 1) e−l(l+1) θr/T ,

where θr := h̄2/2Ik
B
. We can find good approximations for this sum in two limiting cases. For high values

of T , the argument of the sum varies slowly with l, so we can replace l by a continuous variable x and the
sum by an integral (in which we then introduce x 7→ y := x(x+ 1)),

T � θr : Z
(qm)
1,rot ≈

∫ ∞
0

dx (2x+ 1) e−θrx(x+1)/T =

∫ ∞
0

dy e−θry/T =
T

θr

= Z
(cm)
1,rot ,

and we see that C
(qm)
r ≈ Nk

B
, as expected. For low values of T , the terms in the sum decrease very rapidly

as l increases. If we consider only the first two terms,

T � θr : Z
(qm)
1,rot = 1 + 3 e−2θr/T +O(e−6θr/T ) and C (qm)

r ≈ 6Nk
B
θr e−2θr/T → 0 .

The rotational temperature θr is usually in the range 1–100 K (0.36 K for Cl2 ... 85.4 K for H2), so the
rotational degrees of freedom of a gas are excited at much lower temperatures than the vibrational ones.

Reading

• Course textbook: Kennett, §§4.4 and 4.5.
• Other texts: Chandler, §4.9; Halley, Part of Ch 5; Kardar, §6.1; Pathria & Beale, §6.5; Schwabl, §5.1.


