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Quantum Monatomic Ideal Gas and the Classical Limit

• Introduction: Now that we have described the way identical particles are treated in quantum theory, we
can look at the effects of quantum statistics on the equation of state for an ideal gas. If we start from the
quantum partition function, we can write it as a series of terms in which the first one is the classical partition
function (which will turn out to be a good approximation in the low-density and/or high-temperature limit)
and the other ones are quantum corrections, that can be calculated systematically.

Canonical Partition Function

• Setup: Consider an ideal gas of N identical structureless, non-interacting particles at temperature T . We
will use the coordinate representation, with plane waves φ~k(~r) labelled by wave vectors ~k as basis for single-

particle states, and associate an N -particle state ψ{~k}(~r1, ..., ~rN ) = 〈~r1, ..., ~rN |~k1, ...,
~kN 〉 to each permutation

equivalence class {~k} = [~k1, ...,
~kN ] of N wave vectors. Then we have to calculate

Z(qm)
c = tr e−βĤ =

∫
V

d3Nr 〈~r1, ..., ~rN | e−βĤ |~r1, ..., ~rN 〉

=
∑
{~k}

∑
{~k}′

∫
V

d3Nr 〈~r1, ..., ~rN |~k1, ...,
~kN 〉 〈~k1, ...,

~kN | e−βĤ |~k′1, ...,~k′N 〉 〈~k′1, ...,~k′N |~r1, ..., ~rN 〉

=
1

N !

∑
{~k}

e−βE(k1,...,kN )
∑

P,P ′∈PN

(±1)[P+P ′]

∫
V

d3Nr φ~k1(~rP1) · · · φ~kN (~rPN )φ∗~k1
(~rP ′1) · · · φ∗~kN (~rP ′N ) ,

where we have used the completeness relation
∑
{~k} |~k1, ...,

~kN 〉 〈~k1, ...,
~kN | = 1, and the fact that |~k1, ...,

~kN 〉
is an eigenstate of Ĥ. In a rectangular box of size V = L1L2L3 and with periodic boundary conditions, the
allowed values for the ith component of each wave vector are ki = (2π/Li)n, where n ∈ Z is any integer.
Therefore, an N -tuple of wave vectors is labelled by 3N integers ~nI , I = 1, ..., N . Notice that for both types
of quantum statistics this does not equal Z = ZN1 /N !, the value we would find using Boltzmann statistics.

• Approximation: We would like to replace the sum over the ~kI by an integral, but the sum is over equivalence

classes {~k} rather than sets of N independent wave vectors. However, in the approximation in which the

discrete set of values for ~kI can be replaced by a continuous range of integration, each equivalence class {~k}
corresponds to N ! distinct N -tuples (this would not be true for equivalence classes containing two or more

equal ~kIs, but those are of measure zero in the continuum approximation). We can therefore replace∑
{~k}

(...) =
∑
{~n}

(...) ≈ 1

N !

∫
IR

d3Nn (...) =
1

N !

V N

(2πh̄)3N

∫
IR

d3Np (...) .

This approximation works well in the large box size (V →∞) and high temperature (T →∞) limit.

• Calculation: The argument of the integral over the ~rI in Z
(qm)
c is a product of factors of the form

φ~kI
(~r

PI
)φ∗~kI

(~r
P ′I) =

1

V
ei~kI ·(~rPI−~rP ′I) ,

whose behavior is very different depending on whether ~rPI = ~rP ′I or not, so the result of the integration
depends on how many factors have ~rPI = ~rP ′I , i.e., how different the two permutations P and P ′ are. So, if
we introduce a relative permutation P ′′ by setting P ′ =: PP ′′, the argument of the sum turns out to depend
only on P ′′ and the sum over P simply produces a factor N ! (since [2P + P ′′] = [P ′′] and d3Nr = d3NPr),

Z(qm)
c =

1

(N !)2

V N

(2πh̄)3N

∫
IR

d3Np e−β ΣIp
2
I/2m

∑
P,P ′′∈PN

(±1)[P ′′]

∫
V N

d3Nr
1

V N

N∏
I=1

ei~kI ·(~rI−~rP ′′I)

=
1

N !h3N

∫
IR

d3Np e−β ΣIp
2
I/2m

∑
P ′′∈PN

(±1)[P ′′]

∫
V N

d3Nr

N∏
I=1

ei~kI ·(~rI−~rP ′′I)

=
1

N !h3N

∑
P ′′∈PN

(±1)[P ′′]
N∏
I=1

∫
V

d3r
I

∫
IR

d3p
I

exp
{
− β p2

I
/2m+ i ~p

I
· (~r

I
− ~r

P ′′I)/h̄
}
.
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Now “complete the square” in the exponent inside the last integral to get, for each I, three Gaussian integrals
that evaluate to (2πmk

B
T )3/2 and an extra factor exp{−(m/2βh̄2)(~r

I
−~r

P ′′I)
2}. Renaming P ′′, the result is

Z(qm)
c =

1

N !λ3N

∑
P∈PN

(±1)[P ]
N∏
I=1

∫
V

d3r
I
f(~r

I
− ~r

PI
) , f(~r) := e−(m/2βh̄2) r2 = e−πr

2/λ2

,

where λ := h/
√

2πmk
B
T , as in the classical case, and f is a fast decreasing function of the magnitude of ~r.

• Expansion: The sum over P includes the identity permutation (PI = I for all I), permutations in which
only two labels I and J are switched (PI = J and PJ = I), and ones in which more labels are changed. For
each P , any label that is not involved give rise to f(~r

I
− ~r

PI
) = f(~r

I
− ~r

I
) = f(0) = 1, so

Z(qm)
c =

1

N !λ3N

∫
V N

d3Nr
[
1±

∑
I<J

f(~r
I
− ~r

J
) f(~r

J
− ~r

I
) +

∑
I<J<K

f(~r
I
− ~r

J
) f(~r

J
− ~r

K
) f(~r

K
− ~r

I
)± ...

]
.

The first term contributes a term V N to the sum. The next term contains
(
N
2

)
integrals of the form∫

V

d3r
I

∫
V

d3r
J
f2(~r

I
− ~r

J
) =

∫
V

d3r
I

∫
V

d3r
J

e−2π(~rI−~rJ )2/λ2

≈ V
∫

IR3

d3r e−2πr2/λ2

=
V λ3

23/2
.

Together they contribute a term ±
(
N
2

)
V N−2 (V λ3/23/2), proportional to (N − 1)V N (ρλ3), to the overall

sum over P ∈ PN . In general, terms with more fs in the expansion contribute terms with higher powers of
the degeneracy parameter δ := Nλ3/V = ρλ3 to the sum. Since the approximations we made assume that

this parameter is small we can expand Z
(qm)
c in powers of δ, and we have already calculated the two leading

terms,

Z(qm)
c =

V N

N !λ3N
± 1

N !λ3N

(
N

2

)
V N−2 V λ

3

23/2
+ ... = Z(cm)

c

(
1± N − 1

25/2
ρλ3 + ...

)
.

The first term, which came from the identity permutation, is the classical partition function, including the N !
in the denominator from Boltzmann state counting, and the first quantum correction, arising from 2-particle
exchanges, becomes increasingly important at large densities and low temperatures.

Quantum Corrections to Ideal-Gas Thermodynamics

• Idea: The physical meaning of the first quantum correction can be seen either by deriving an effective
statistical interparticle potential (see the P&B book, for example), or by looking at the p equation of state.

• Free energy: All thermodynamic quantities are evaluated using F , so we start with

F = −k
B
T lnZ(qm)

c = −k
B
T ln

[
Z(cm)

c

(
1± N − 1

25/2
ρλ3 + ...

)]
= F (cm) − k

B
T ln

(
1± N − 1

25/2
ρλ3 + ...

)
≈ F (cm) ∓ k

B
T
N − 1

25/2
ρλ3 = F (cm) ∓ N(N − 1)

2

(
π

m

)3/2
h̄3

V
√
k

B
T
.

• Pressure equation of state: From the general expression for p in terms of F ,

p = −∂F
∂V

∣∣∣∣
T,N

= p(cm) ∓ N(N − 1)

2

(
π

m

)3/2
h̄3

V 2
√
k

B
T

+ ... = k
B
T
N

V

(
1∓ λ3

25/2

N

V
+ ...

)
,

from which we can read off the second virial coefficient B2(T ) = ∓λ3/25/2, and we see that bosons have a
negative quantum correction to the pressure and fermions have a positive one (degeneracy pressure), purely
as a consequence of quantum statistics and even in the absence of interactions.

Reading

• Course textbook: Kennett’s book does not cover this topic.
• Other texts: Halley, Ch 4 & 5; Kardar, § 7.2; Pathria & Beale, Ch 5; Plischke & Bergersen, § 2.4; Reichl,
§ 5.3; Reif, § 9.8; Schwabl, §§ 4.2–4.3.


