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Pure and Mixed States in Quantum Mechanics

Review of the Basic Formalism and Pure States

e Definition: A pure quantum state is a vector ¥ = |¢)) in a Hilbert space H, a complex vector space with
an inner product (¢|1). This defines a norm in the space, ||¢|| := (¢|1)'/2, and we will usually assume that
all vectors are normalized, so that ||¢|| = 1. For a particle moving in a region R of space these vectors are
commonly taken to be square-integrable functions v (r) = (r|e)) in H = L?(R, d3z), with inner product

(@l) == /R a3 " (1) (r)

e Choice of basis and interpretation: Any state can be written as a linear combination [¢)) = 3" ¢, |¢,) of
elements of a complete orthonormal set (c.0.n.8.) {|¢,) | (#,|Po/) = 0,0} (for example ¢y (r) = e'¥*//V),
where the coefficients ¢, = |c,, | el®» can be calculated from ¢, = (¢_|1)) and are interpreted as the probability
amplitudes for the system to be found in the corresponding states.

e Observables: A quantum observable is an operator A : H — H that is self-adjoint (if the corresponding
classical observable is real). The possible outcomes of a measurement of A are its eigenvalues A, satisfying
Alo,) = A l¢.,), where |¢,) are its eigenvectors. The expectation value of A in a given state U is

() = 1A = [P Pan v @ A0 = X, i A -

a,a’

e Time evolution: It is governed by the Hamiltonian operator H.If {#,} is a basis of eigenfunctions of the
Hamiltonian, with H|¢,) = E_, |¢,), the Schrodinger equation and the time evolution of |¢) are given by

ov(x,t)
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e Matrix notation: Given any state ¥, we can define an operator p = |¢)) (¢|. If the vector ¥ is normalized
this operator satisfies /32 = p, pi = p (it is a projection operator), and tr p = 1, and we can rewrite expectation
values as (A4),, = trpA. Then, if ¥ =3 c, ®,, in terms of a c.o.n.s. p can be written as a matrix,

p= Z Paa’ |¢ < ’| ’ with Paa’ = CQCZ/ )

Mixed Quantum States

e Idea: To represent the available information about a system in statistical mechanics, we need more general
mized states, giving the probabilities |c,|? of finding the system in any of the |¢, ), but not necessarily any
information on the phases 6,. This can be done using operators p : H — H satisfying pl=pandtrp=1
but in general with p? # p, called density matrices. The space of density matrices is Liouville space.

e Observables: Generalizing the expression for expectation values obtained for pure states in the matrix
notation, we define (A4), := tr pA. In particular, if we use as c.on.s. {|$,)} one whose elements are eigen-

vectors of A, then A, = A, 0,, and (A), =trpA =3 p,,A\,- This means that for any mixed state p,
o=, lplo,) =lc,|? is the probability of finding the system in eigenstate «, as with a pure state.

e Mixed states from averaged-out phase information: In quantum statistical mechanics mixed states often
arise as follows. If the probabilities |a,|? that a quantum system will be found in each of the |¢,)s are
known while the phases 6, are not, assume that all values are equally likely and average the matrix elements
Paos = CaCor over 0 < 0, < 2m. The off-diagonal entries in p,,, will average to zero, while the diagonal
entries will give p,,, = |c,|?. The new density matrix p in general no longer satisfies p* = p.

e Additional comments: (1) The Hilbert space for a system counsisting of two subsystems A and B is
H =H, ®MHp, and from any state p, p a mixed state for A can be obtained by tracing over subsystem B,
pa =trgpa p- (2) As a measure of the mixedness of a quantum state p one can use its n = 2 Rényi entropy.
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Example: Mixed State for the Spin of an Electron

o Density matrix: Suppose that an electron has a 50% probability of S, being +%, and 50% of being —%.
A pure state, its corresponding density matrix, and a mixed state which give these values are, respectively,
—i6
0 1 e! 1 a
|¢>:%(|T>+el I\L)) or ppure:|¢><w|:§<619 1 )’ pmixedzé(a* 1)
e Mean value and fluctuation of spin: Check that the mean value of S, vanishes in both states and calculate
the mean value of S, in both states; why is the result reasonable? Calculate their variances (AS,)? and
(AS,)?, and compare the results for the pure state and the mixed state; comment on the results.

State Evolution

e Evolution equation: Working in the Schrodinger picture, we start by obtaining the time evolution of a p
corresponding to a pure state, p = |¢) (1|, by taking a time derivative of p(z,z’) = (z) »* ('),

9 n_ () 5‘?/}@')) [

< = * = [H,p].

oo pl@.a) = (S5 ) + (@) T ) = o [H.p]
By linearity we can then extend the validity of the expression (1/ik) [H, p] for the time derivative to all density
matrices p. This is the Liouville-von Neumann equation, and the operator £ = (ih)~1[H, - ] is sometimes

called the Liouvillian. Alternatively, p(t) = U(t,t,) p(ty) U(t, t,)T, with U(t,t,) = exp{—i [ Hdt/h}.

e Quantum equilibrium density matrix: An equilibrium density matrix is one which is time-independent or,
given the form of the evolution equation for p, one satisfying [H,p] = 0. So, p must be a function of some
set of 3N commuting operators including H, and be diagonal in the corresponding basis of eigenstates.

The Quantum Microcanonical Density Matrix

e Density matrix: To describe a system with energy E, € (E—A/2, E+A/2) in an incoherent superposition
of states, start with a coherent sum over such states, ¢ = " |a,,| el ¢ . and write p as an average <|1/})<¢|>
over all phase angles §,,. The assumption of equal a priori probabilities implies that all |a,,| for states in this
energy range are equal; if we also assume a priori uniformly random phases, we get
ot 1 .
Poar = (|ay|]al] IRICA 0(1)> = T(N.V.EA) 0pyr for E, € (E—AJ2,E+ A/2), 0 otherwise ,

where T'(N,V, E; A) is the number of states in this energy range.

The Quantum (Grand) Canonical Density Matrix

e Density matrix: If we can partition the system into two parts, each of which is similar to the whole system
so that its p is the same function of the constants of motion, with little interaction between them, then as
in the classical case H ~ H, + H, and p,, = p(()}l)al p((fz)az, solnp,, =In p(c,}l)a1 +1In p,(fz)w. This means that
Inp,, must be an additive constant of the motion, or neglecting a possible overall p’ or L and in a basis of

eigenstates of H and N ,

paa’ = eC_BEQ+BMNQ 5(10/ .
Then, in an arbitrary basis and calling e =: Z=1 (K := H — uN is sometimes called the grand Hamiltonian),
L —p—pi) 7 tp o BUH—nN)

pP= E )
e Example: A spin—% particle in a magnetic field B=B z, with Hamiltonian H = —[i - B= — U7 - é, where
the o, are the Pauli matrices

(01 (0 i (10
#=\10) T\~ 0) =70 -1)
Then p = [2cosh(BuB)] - diag(eB,e=P1B) and one gets, for example, (i ) = ptanh(BuB).

Reading

e Textbooks: Kennett does not discuss this material; Pathria & Beale, Chapter 5.
e Other references: Part of this material is covered in Plischke & Bergersen (§ 2.4), Halley (the first half of
Ch 2) and Schwabl (§§ 1.3-1.4). An extended treatment is in J A Gyamfi, arXiv:2003.11472 (2020).



