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Example: Paramagnetism

Introduction

e Jdea: A paramagnetic material is one in _which each atom has an intrinsic magnetic dipole moment i;
when placed in an external magnetic field B the dipole moments align themselves with B and enhance it.
We want to find the mean magnetization M and the susceptibility y = M /0B |7 n as functions of 7.

e Hamiltonian: For N atoms with magnetic dipole moments ;, H is of the form Hy,—>", fi,- B', where H, is
the contribution from phase space degrees of freedom other than the orientation of the ;. For example, for
fluid particles H,, might be of the form Y, p?/2m + > i<jv(ry;), while for atoms in a solid lattice it might
contain an oscillator-like potential energy; the specific form of this term will not affect our calculation of M
and x. Interactions among the p, will be considered later, when we discuss ferromagnetism.

Microcanonical Ensemble

e Quantum system: For each of the N atoms in the system, the component of the magnetic moment along
the direction of the magnetic field can have one of two values p1, = £p, with corresponding energies e = FuB.
If ng is the number of atoms with p, = £y and n:=n, —n_, then n . = % (N Fn) and the total energy of
the system is E,, = —nuB, withn = —N, ..., N. The value of E identifies a macrostate, and the multiplicity
(number of corresponding microstates) is the number of ways in which n, atoms can be chosen out of N, or
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e Temperature: The function Q(n) has a convex shape, with a maximum at n = 0 or n, =n_ = N/2, so
the temperature k,T := (0InQ/OF)~! is negative for n > 0. [x How does a system with T' < 0 behave?]

e Classical system: In the classical case, to find the multiplicity we need to calculate the volume Q(FE, A) of
the region of the phase space of N dipoles in which H(q,p) € [E, E + A], and then calculate g(E) = 9Q/OE.
Classical Canonical Ensemble

e Partition function: Assume again that the system consists of N atoms in a solid lattice, and that the
magnetic field is of the form B = B 2. Integrating over all translational and orientational degrees of freedom,
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where Z, is the part of the partition function that does not include the integration over orientations.

e Magnetization: From the general relationships, we get for the free energy
sinh SuB
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To find the magnetization and susceptibility, we use the fundamental thermodynamic identity in the form
dF = —SdT — pdV + pdN — M - dB + ...
and, if we define z := BuB = uB/k,T, we get (notice that Z, has dropped out of these results; x plot M)

F=—k,ThZ,=—kT(InZ,+ Nlndr) — Nk, Tln
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e Low and high-temperature limits: Writing coth « in terms of e*® we see that as T — 0 all spins are aligned,
M~ Ny, x—0.

(However, since the probability distributions for different spins are independent, the correlations between s,

and s, i # j, still vanish.) Near z = 0 we can expand cothz in (Laurent) power series, and we see that as

T — 00, M ~ %Nu (BuB) = %Nﬁ;ﬂB — 0, as we would expect.

[x* Can a paramagnet in a canonical state have T' < 07]

e Reading: Kennett, § 1.3.1 (quantum microcanonical state); Pathria & Beale, §§ 3.9 and 3.10.
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Example: Harmonic Oscillators

o (lassical microcanonical ensemble: Consider a system of N identical harmonic oscillators, with

2
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assumed to be oscillating around distinct fixed positions, with mass m and frequency w. To study the
thermodynamics of this system the first step is to calculate its entropy, for which we need to find the volume
of the H(q,p) = F hypersurface in phase space. This is similar to the monatomic ideal gas case, but the
surface is now topologically a (2N — 1)-dimensional sphere in 2N-dimensional phase space.

e Classical canonical ensemble: The canonical case is simpler, and we find (for oscillators at fixed locations)
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Consistently with the equipartition principle, from this one finds that £ = N kT, and therefore C' = Nk,.

e Quantum canonical ensemble: The integral over classical states (phase space) for each oscillator is replaced
by a sum over quantum states. Since for each oscillator the eigenstates |n) of the Hamiltonian are discrete,
with corresponding eigenvalues €, = (n + %) hw, and the oscillators don’t interact, the partition function is
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A short calculation then gives F = (Nhw/2) coth(Bhw/2) and C o [1/sinh(Bhw/2)]%. [T — 0 limit?]

e Reading: Kennett, § 4.4.3 (classical); Pathria & Beale, §§ 2.4 (phase space), 3.8 (canonical), 4.4 (grand
canonical), and 5.3C (quantum); Reif, pp 55-56 (classical phase space) and 251-253 (quantum, canonical).

Example: Systems with Discrete Sets of States

e Idea: Systems for which the space of states is finite or discrete are motivated by quantum theory, but if the
states can be labelled in a simple way we can discuss their thermodynamics simply by calculating Z as a sum
over the states, without using the whole quantum formalism. This will lead to an important observation.

e Simple example: Consider two identical particles, each of which can have one of three values of the single-
particle energy €, = ne, (with n =0, 1, 2), with degeneracies g,, = 1, 2, 4. There are a total of 1 +24+4 =7
single-particle states labeled by (n,m) = (0,1); (1,1), (1,2); (2,1), (2,2), (2,3), and (2,4).

e Boltzmann statistics: FEach of the 2 particles can be in any one of 7 states, so the Boltzmann argument
used to solve the Gibbs paradox leads to Qp = 7%/2! = 24.5 states for the 2-particle system. What went
wrong is that we were assuming that all 72 pairs of states are double-counted, while in reality the ones in
which the two particles are in the same state are not. In the continuum case this is not a problem because
those situations are a subset of zero measure of all 2-particle states; in the discrete case it matters.

n,m?

e Correct state counting: If the two particles can be in the same state, the number of 2-particle states is the
number of ways of placing the particles in the 7 single-particle states with repetitions, or Qgp = (;) + 7=
28. A two-particle state can be written down by indicating which state each particle is in, for example
¢1,1,2,3 = %Wl,l ® 1/)2,3 +Py3® N 1] Or Y1999 = V12 ® %2’ or simply giving the number of particles
in each single-particle state (n, m), for example |{ N,.m}) =10;1,050,0,1,0) or [0;0,2;0,0,0,0), as in Fock
space. If the two particles cannot be in the same state, then we get instead Qpp = (;) =21.

e Thermal state: (Bose-Einstein case) The total energy E = F; + E, of the 2-particle system has 5 possible
values E;, = 0, €,, 2¢€, 3¢, 4¢,, with multiplicities g; = 1, 2, 7, 8, 10. (As a consistency check, one can
verify that ) . g, = 28.) For a thermal state at temperature 7', the partition function is then the sum
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