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Example: Paramagnetism

Introduction

• Idea: A paramagnetic material is one in which each atom has an intrinsic magnetic dipole moment ~µ;
when placed in an external magnetic field ~B, the dipole moments align themselves with ~B and enhance it.
We want to find the mean magnetization M̄ and the susceptibility χ = ∂M̄/∂B|T,N as functions of T .

• Hamiltonian: For N atoms with magnetic dipole moments µi, H is of the form H0−
∑
i ~µi · ~B, where H0 is

the contribution from phase space degrees of freedom other than the orientation of the µi. For example, for
fluid particles H0 might be of the form

∑
i p

2
i /2m +

∑
i<j v(rij), while for atoms in a solid lattice it might

contain an oscillator-like potential energy; the specific form of this term will not affect our calculation of M̄
and χ. Interactions among the µi will be considered later, when we discuss ferromagnetism.

Microcanonical Ensemble

• Quantum system: For each of the N atoms in the system, the component of the magnetic moment along
the direction of the magnetic field can have one of two values µz = ±µ, with corresponding energies ε = ∓µB.
If n± is the number of atoms with µz = ±µ and n := n+−n−, then n± = 1

2 (N ∓n) and the total energy of
the system is En = −nµB, with n = −N , ..., N . The value of E identifies a macrostate, and the multiplicity
(number of corresponding microstates) is the number of ways in which n± atoms can be chosen out of N , or

Ω(n) =

(
N

n±

)
=

N !

[ 1
2 (N + n)]! [1

2 (N − n)]!
.

• Temperature: The function Ω(n) has a convex shape, with a maximum at n = 0 or n+ = n− = N/2, so
the temperature k

B
T := (∂ ln Ω/∂E)−1 is negative for n > 0. [? How does a system with T < 0 behave?]

• Classical system: In the classical case, to find the multiplicity we need to calculate the volume Ω(E,∆) of
the region of the phase space of N dipoles in which H(q, p) ∈ [E,E+ ∆], and then calculate g(E) = ∂Ω/∂E.

Classical Canonical Ensemble

• Partition function: Assume again that the system consists of N atoms in a solid lattice, and that the
magnetic field is of the form ~B = B ẑ. Integrating over all translational and orientational degrees of freedom,

ZB =
( 1

h3N

∫
d3Nr

∫
d3Np e−βH0

)∮
dNΩ eβ Σi µiB cos θi

= Z0

(∫ 2π

0

dφ

∫ π

0

dθ sin θ eβµB cos θ
)N

= (2π)N Z0

(2 sinhβµB

βµB

)N
,

where Z0 is the part of the partition function that does not include the integration over orientations.

• Magnetization: From the general relationships, we get for the free energy

F = −k
B
T lnZB = −k

B
T (lnZ0 +N ln 4π)−Nk

B
T ln

sinhβµB

βµB
.

To find the magnetization and susceptibility, we use the fundamental thermodynamic identity in the form

dF = −S dT − p dV + µdN − ~M · d ~B + ...

and, if we define x := βµB = µB/k
B
T , we get (notice that Z0 has dropped out of these results; ? plot M̄)

M̄ = −∂F
∂B

∣∣∣
T,V,N

= Nµ
(

cothx− 1

x

)
, χ =

∂M̄

∂B

∣∣∣
T,V,N

= Nµ2β
( 1

x2
− 1

sinh2 x

)
> 0 .

• Low and high-temperature limits: Writing cothx in terms of e±x we see that as T → 0 all spins are aligned,

M̄ ∼ Nµ , χ→ 0 .

(However, since the probability distributions for different spins are independent, the correlations between si
and sj , i 6= j, still vanish.) Near x = 0 we can expand cothx in (Laurent) power series, and we see that as

T →∞, M̄ ∼ 1
2 Nµ (βµB) = 1

2 Nβµ
2B → 0, as we would expect.

[? Can a paramagnet in a canonical state have T < 0?]

• Reading: Kennett, § 1.3.1 (quantum microcanonical state); Pathria & Beale, §§ 3.9 and 3.10.
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Example: Harmonic Oscillators

• Classical microcanonical ensemble: Consider a system of N identical harmonic oscillators, with

H(q, p) =

N∑
i=1

(
p2
i

2m
+
mω2

2
q2
i

)
,

assumed to be oscillating around distinct fixed positions, with mass m and frequency ω. To study the
thermodynamics of this system the first step is to calculate its entropy, for which we need to find the volume
of the H(q, p) = E hypersurface in phase space. This is similar to the monatomic ideal gas case, but the
surface is now topologically a (2N − 1)-dimensional sphere in 2N -dimensional phase space.

• Classical canonical ensemble: The canonical case is simpler, and we find (for oscillators at fixed locations)

Zcm
c =

1

hN

N∏
i=1

∫
IR

dqi e−βKq
2
i /2

∫
IR

dpi e−βp
2
i /2m =

1

hN

(√
2π

βK

√
2πm

β

)N
=

1

(βh̄ω)N
.

Consistently with the equipartition principle, from this one finds that Ē = Nk
B
T , and therefore C = Nk

B
.

• Quantum canonical ensemble: The integral over classical states (phase space) for each oscillator is replaced
by a sum over quantum states. Since for each oscillator the eigenstates |n〉 of the Hamiltonian are discrete,
with corresponding eigenvalues εn = (n+ 1

2 ) h̄ω, and the oscillators don’t interact, the partition function is

Zqm
c =

( ∞∑
n=0

e−βh̄ωn e−βh̄ω/2
)N

=

(
e−βh̄ω/2

1

1− e−βh̄ω

)N
=

(
1

2 sinh(βh̄ω/2)

)N
.

A short calculation then gives Ē = (Nh̄ω/2) coth(βh̄ω/2) and C ∝ [1/ sinh(βh̄ω/2)]2. [T → 0 limit?]

• Reading: Kennett, § 4.4.3 (classical); Pathria & Beale, §§ 2.4 (phase space), 3.8 (canonical), 4.4 (grand
canonical), and 5.3C (quantum); Reif, pp 55-56 (classical phase space) and 251-253 (quantum, canonical).

Example: Systems with Discrete Sets of States

• Idea: Systems for which the space of states is finite or discrete are motivated by quantum theory, but if the
states can be labelled in a simple way we can discuss their thermodynamics simply by calculating Z as a sum
over the states, without using the whole quantum formalism. This will lead to an important observation.

• Simple example: Consider two identical particles, each of which can have one of three values of the single-
particle energy εn = n ε0 (with n = 0, 1, 2), with degeneracies gn = 1, 2, 4. There are a total of 1 + 2 + 4 = 7
single-particle states ψn,m, labeled by (n,m) = (0,1); (1,1), (1,2); (2,1), (2,2), (2,3), and (2,4).

• Boltzmann statistics: Each of the 2 particles can be in any one of 7 states, so the Boltzmann argument
used to solve the Gibbs paradox leads to ΩB = 72/2! = 24.5 states for the 2-particle system. What went
wrong is that we were assuming that all 72 pairs of states are double-counted, while in reality the ones in
which the two particles are in the same state are not. In the continuum case this is not a problem because
those situations are a subset of zero measure of all 2-particle states; in the discrete case it matters.

• Correct state counting: If the two particles can be in the same state, the number of 2-particle states is the
number of ways of placing the particles in the 7 single-particle states with repetitions, or ΩBE =

(
7
2

)
+ 7 =

28. A two-particle state can be written down by indicating which state each particle is in, for example
ψ1,1;2,3 = 1√

2
[ψ1,1 ⊗ ψ2,3 + ψ2,3 ⊗ ψ1,1] or ψ1,2;1,2 = ψ1,2 ⊗ ψ1,2, or simply giving the number of particles

in each single-particle state (n,m), for example |{Nn,m}〉 = |0; 1, 0; 0, 0, 1, 0〉 or |0; 0, 2; 0, 0, 0, 0〉, as in Fock

space. If the two particles cannot be in the same state, then we get instead ΩFD =
(

7
2

)
= 21.

• Thermal state: (Bose-Einstein case) The total energy E = E1 +E2 of the 2-particle system has 5 possible
values Ei = 0, ε0, 2 ε0, 3 ε0, 4 ε0, with multiplicities gi = 1, 2, 7, 8, 10. (As a consistency check, one can
verify that

∑
i gi = 28.) For a thermal state at temperature T , the partition function is then the sum

Z =
∑28

s=1
e−βEs =

∑5

i=1
gi e−βEi = 1 + 2 e−βε0 + 7 e−2βε0 + 8 e−3βε0 + 10 e−4βε0 .


