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Classical Monatomic Ideal Gas

Equipartition Principle

• Statement: The equipartition principle is a statement about classical systems with quadratic Hamiltonians.
It states that any canonical variable ξ (a q or a p) that appears in H only in a quadratic additive term of the
form κ ξ2, where κ is a constant, and whose range of values can be considered to be (−∞,∞), contributes a
term 1

2kB
T to the mean energy of the system, or 1

2kB
to the heat capacity. In particular, the mean energy

of a system of N non-interacting particles (distinguishable or not), each of which contributes f quadratic
terms in the positions and/or momenta to the total Hamiltonian is Ē = 1

2 fNkB
T .

• Proof: Suppose the Hamiltonian is of the form H = H̃(q̃, p̃) + κ ξ2, where κ and ξ are as described above
and the variables (q̃, p̃) do not include ξ. Then the partition function and mean energy can be calculated as

Zc =

∫
Γ

dΩ e−βH(q,p) = Z̃

∫ +∞

−∞
dξ e−βκ ξ

2

= Z̃

√
π

βκ
, Ē = − ∂

∂β
lnZc = Ẽ + 1

2

∂

∂β
lnβ = Ẽ + 1

2kB
T ,

where Z̃ and Ẽ are the parts of Zc and Ē that contain the contribution from the variables (q̃, p̃), and we

have used the well-known Gaussian integral
∫ +∞
−∞ dx e−ax

2

=
√
π/a.

Classical Monatomic Ideal Gas Thermodynamics

• Setup: As a first example of application of the equipartition principle, consider a monatomic ideal gas.
The Hamiltonian is a sum of terms from individual non-interacting particles; if the particles are single atoms
and T is low enough that their internal, electronic or nuclear degrees of freedom are not excited, then each
term in the Hamiltonian is just the particle’s translational kinetic energy, H(q, p) =

∑N
i=1 ~p

2
i /2m.

• Canonical partition function: For a single particle, using again the Gaussian integral,

Z1 =
1

h3

∫
V

d3x

(∫ +∞

−∞
dp e−βp

2/2m

)3

=
V

h3

(√
π

β/2m

)3

=
V

λ3
T

,

where λT :=
√
h2β/2πm is the thermal wavelength. For N particles, since the particles are non-interacting

(H = H1 + ... + HN ) the partition function is the product of N single-particle ones. If the particles are
identical, however, one must take into account the fact that any permutation of the N particles leads to an
indistinguishable state, even classically. This Boltzmann statistics leads to the N -particle partition function

Zc =
1

N !
ZN1 =

V N

N !λ3N
T

.

• Mean energy: We can obtain the mean energy directly from the equipartition principle, or as a result of a
short calculation,

Ē = − ∂

∂β
ln
V N

N !

(
2πm

h2β

)3N/2

= 3
2 NkB

T ,

an expression that agrees with what we expect from the kinetic theory of ideal gases.

• Helmholtz free energy: Using the partition function Zc above for a monatomic ideal gas, we find

F = −k
B
T lnZc = −k

B
T ln

V N

N !λ3N
T

= −k
B
T (lnV N − lnN !− lnλ3N

T ) .

This expression can now be used to obtain the pressure p, entropy S and chemical potential µ using definitions
obtained from the fundamental identity of thermodynamics for F .
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• Pressure: The ideal gas pressure equation of state can be obtained from the free energy,

p = −∂F
∂V

∣∣∣
T,N

= k
B
T

d

dV
lnV N = Nk

B
T

1

V
, or pV = Nk

B
T .

(Alternatively, from S(E, V ) = k
B

ln Ω = k
B

ln(V Nf(E)) and dS = δQ/T = (dE + pdV )/T we get that
p/T = ∂S/∂V |E = Nk

B
/V .)

• Entropy: Using the fact that S = T−1(Ē − F ) and defining the number density ρ := N/V we get

S = 3
2 NkB

+ k
B

(lnV N − lnN !− lnλ3N
T ) ≈ Nk

B

[
− ln(ρλ3

T ) + 5
2

]
= Nk

B

{
ln
[V
N

(2πm

h2β

)3/2]
+ 5

2

}
.

This expression, obtained using the Stirling approximation lnN ! ≈ N lnN − N , is the Sackur-Tetrode
formula. Notice that, had we not had the N ! factor in the denominator of Z, the lnN ! term would have
been absent in the first expression above (Ē would not have changed, nor the pressure equation of state).
As a result, the entropy would not have been additive (extensive), leading to the Gibbs paradox.

• Chemical potential: Using the expression of µ as a derivative of the Helmholtz free energy, we get

µ :=
∂F

∂N

∣∣∣
T,V

=
∂

∂N

[
− k

B
T (lnV N − lnN !− lnλ3N

T )
]
≈ k

B
T ln(ρλ3

T ) ,

where we have again approximated lnN ! using the Stirling formula. Alternatively, we can use

µ = G/N = (E − TS + pV )/N .

Second-Order Quantities and Fluctuations

• Remark: As our system is in a canonical state, we were able to derive expressions for all thermodynamic
variables above just using the partition function Zc instead of having to use the full ρ(q, p). Second-order
thermodynamic quantities can also be calculated using ony Zc, because they are derivatives of first-order
ones, and some fluctuations of phase-space functions can be reduced to second-order quantities.

• Heat capacity: There is a simple expression for any system in a canonical state. Using (∂/∂β)Zc = −ZcĒ,

CV =
∂Ē

∂T

∣∣∣
V,N

=
dβ

dT

∂

∂β

( 1

Zc

∑
sH(s) e−βH(s)

)
= − 1

k
B
T 2

[ 1

Z2
c

(ZcĒ)2 − 1

Zc

∑
sH

2(s) e−βH(s)
]

=
(∆E)2

k
B
T 2

.

This is a special case of a general result known as the fluctuation-dissipation theorem. Notice that it is always
positive, CV > 0. For the classical monatomic ideal gas in particular, we can calculate CV = ∂Ē/∂T = 3

2NkB
,

as we already knew from kinetic theory.

• Compressibility: The isothermal compressibility is κT = −(1/V ) (∂V/∂p)T,N = 1/p, as we also had found
before. (And, like other response functions for any system in a canonical ensemble, it is always positive.)

• Energy fluctuations: The variance of the distribution of values of the energy can be obtained from the
general relation (∆E)2 = k

B
T 2CV for any system in thermal equilibrium. Then, in our case of the monatomic

ideal gas, (∆E)2 = 3
2 N(k

B
T )2 = Ē2/( 3

2 N), and the relative energy fluctuation is (∆E)/Ē =
√

2/(3N).

The Maxwell Speed Distribution

To find the probability distribution of particle speeds we actually need to know the full distribution function
ρ(q, p) for the system. Since the probability density that a particle have momentum ~p is h−3

∫
V

d3r ρ(~r, ~p),
we get that the probability density for the magnitude v of the velocity is

f(v) =
m3v2

h3

∫
sin θ dθ dφ

∫
V

d3r ρ(~r, ~p) =
4πm3v2

h3Z1

∫
V

d3r e−βH1(~r,~p) =

(
m

2π k
B
T

)3/2

4πv2 e−mv
2/2kBT ,

the Maxwell speed distribution for particles in a classical ideal gas.

Reading

• Course textbook: Kennett, § 4.5.
• Other books: Halley, pp 150–154; Mattis & Swendsen, § 2.2; Pathria & Beale, §§ 3.9 (classical) and 8.2
(quantum); Plischke & Bergersen, —; Reif, §§ 6.3 (classical) and 7.8 (quantum); Schwabl, §§ 6.3–6.4.


