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Equilibrium Distribution Functions. I: Microcanonical Distribution

General Considerations on Equilibrium Systems

• Equilibrium state: A state in which no macroscopically observable quantity for the system depends on
time, in practice ∂ρ/∂t = 0, and there is no flow. It is historically important for the subject, and also the
only case that is well understood in general. We want to find a general form for ρ(q, p) for such a state.

• Distribution functions: At equilibrium ρ depends on parameters such as T , V , N , but its phase-space
dependence can only be through the energy E. If its possible values Ei are discrete and there are g(Ei)
states with the same energy for each i, then the distribution function has the same value ρ(Ei) = ρ(α) for all
states α with energy E(α) = Ei, and the probability that the system has that energy is P (Ei) = ρ(Ei) g(Ei).
On the other hand, if the values of the energy are continuous, then the probability that E has a value in
some interval dE can be written in terms of a probability density p(E) that depends on ρ(E) and on the
density of states g(E) = dΩ/dE,

p(E) dE = ρ(E) g(E) dE .

• Possible cases: In terms of physical situations, the main types of equilibrium systems are isolated ones (in
which case we will assume that the value of the energy is known, either precisely or within some range ∆), and
ones that can exchange either heat, or heat and particles with a bath at fixed temperature. Systems of the
latter type are much easier to handle mathematically, if there are no long-range interactions so correlations
with the bath can be neglected, but in the large-N limit they all lead essentially to the same predictions.

The Microcanonical Distribution

• Idea: The distribution function for an isolated system, whose energy and number of particles are fixed.
The energy either has a definite value, H(q, p) = E, or is within a small interval, H(q, p) ∈ [E − ∆

2 , E + ∆
2 ].

• Approach to equilibrium: For what systems, and under what circumstances, does ρ approach an equilibrium
form? This is a very difficult question to answer in general, but results are known for some types of classical
systems, and for this discussion it is useful to distinguish the following:
→ Integrable system: A system with as many commuting constants of the motion (their Poisson brackets
vanish) as degrees of freedom; Then in principle solving the dynamics can be reduced to quadratures.
→ Ergodic system: One for which a trajectory starting at any initial point in phase space fills the entire
constant-energy hypersurface Γ(E) under time evolution. More specifically, for almost every (q0, p0) the long-
time average value of any observable A(q, p) along a dynamical trajectory (q(t), p(t)), which is sometimes
taken to model the result of measuring the value of A over a microscopically long time,

Āt(q0, p0) := lim
τ→∞

1

τ

∫ t0+τ

t0

dt′A(q(t′), p(t′)) equals 〈A〉 :=

∫
Γ(E)

dΩA(q, p) ρ(q, p) ,

the phase-space average of A over Γ(E). Despite this, an ergodic system need not be chaotic; for that we
need the sensitive dependence on initial conditions that characterizes chaos (it may even be integrable).
→ Chaotic system: One which “forgets” its initial state under time evolution. For example a mixing system,
for which the correlation between the state at a time t and the initial state goes to zero as t → ∞; i.e., for
any observables A and B, 〈A(q(t), p(t))B(q0, p0)〉 − 〈A(q0, p0)〉〈B(q0, p0)〉 → 0. [Or in terms of volumes.]

• Equal probabilities assumption: We will assume that the isolated systems we treat have reached equilibrium
and that they are equally likely to be in any allowed state. Because all states on the allowed energy shell
Γ(E) or Γ(E,∆) in phase space are included, we get a microscopic justification for the fact that the entropy
S is maximized. This happens for mixing systems (which are also ergodic). Most realistic large systems are
expected to be mixing, although the statement is difficult to prove for specific cases. [See ergodic hierarchy.]

• Observables: We would like to be able to predict the experimental values Ameas of macroscopic quantities,
which rely on observations over microscopically long times and are often identified with Āt. This long-time
average is difficult to calculate directly, but if the system is ergodic its value is the same for all copies of the
system and independent of (q0, p0), and we can calculate it as a phase-space average, Ameas = Āt = 〈A〉.
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• Justification: This step is justified for ergodic systems. Ergodicity is weaker than mixing and not sufficient
to prove that the system will approach equilibrium, but it is simpler to work with, and it tells us that if the
system approaches equilibrium, that state is unique.

• Distribution function: If the system is known to have a certain energy E, and to be in any of the states
on the hypersurface Γ(E) := {(p, q) | H(q, p) = E} in phase space with equal probability,

ρ(q, p) = constant× δ(H(q, p)− E) =
h3N

ω(E)
δ(H(q, p)− E) =

1

Ω(E)
δ(H(q, p)− E) ,

the microcanonical distribution, where ω(E) =
∫

dω δ(H(q, p) − E) is the “area” of the constant-energy
hypersurface Γ(E). If the energy of the system is only known to be in a certain range of width ∆ around E,
then the phase-space point is in a shell Γ(E,∆) of width ∆ around H(q, p) = E, for which the scaled volume

Ω(E,∆) =

∫
Γ(E,∆)

dΩ =
1

h3N

∫ H=E+∆/2

H=E−∆/2

dω ,

where h is a constant, is interpreted as the number of states in Γ(E,∆). The microcanonical distribution is
a constant on that shell and vanishes elsewhere. In normalized form it can then be written as

ρ(q, p) =

{
Ω(E,∆)−1 if H ∈ [E −∆/2, E + ∆/2]
0 otherwise

=
1

∆ Ω(E)
χE,∆(q, p) .

Obtaining Thermodynamics from the Microcanonical Distribution

• Entropy: Assume that S is a function of the number of classical states Ω ~X(E,∆) available to a system.
Then, since for independent subystems A and B we have ΩS = ΩAΩB and S is extensive, S = SA +SB , the
entropy we use as a starting point for thermodynamics is the Boltzmann entropy,

S(E, ~X) = k
B

ln Ω(E,∆) .

For sufficiently large systems this S is independent of ∆.

• Other quantities: Temperature is defined as T−1 := ∂S/∂E| ~X (recall that in a microcanonical state
the system is not in thermal equilibrium with an environment), and find additional quantities using regular
thermodynamic relations such as F = E−TS; for a fluid, for example, p = −∂F/∂V |T , or p/T = ∂S/∂V |N,E .

Example: The Monatomic Ideal Gas

• Multiplicity: For N pointlike particles of mass m the number of phase-space states in Γ(E,∆) is

ΩV,N (E,∆) =

∫
Γ(E,∆)

d3Nq d3Np

h3N
=
V N

h3N

∫ E+∆/2

E−∆/2

dE
dp

dE
p3N−1

∮
dΩ3N−1 ≈ V N

h3N
· ∆

E
· (2πmE)3N/2

Γ(3N/2)
,

in the ∆ � E approximation (and using the fact that the surface of an (n − 1)-sphere of radius R in n-
dimensional Euclidean space is A(Sn−1, R) = 2πn/2Rn−1/Γ(n/2), with Γ(n + 1) = n! and Γ(1/2) =

√
π),

where the Hamiltonian for a monatomic ideal gas is H(q, p) =
∑3N
i=1 p

2
i /2m, and Γ(3N/2) ≈ (3N/2)!.

• Entropy: Using S = k
B

ln Ω and the Stirling approximation lnn! ∼ n lnn− n, we get the expression

S(E, V,N) = Nk
B

{
ln
[
V
(4πmE

3Nh2

)3/2]
+

1

N
ln

∆

E
+

3

2

}
.

Recall the expression for S obtained earlier from purely thermodynamical considerations. The one we derived
here, without the last two terms which become negligible in the large-N limit, looks similar to that one,
but it cannot be correct because it is not extensive. We will see that to fix this problem we need to use
Boltzmann statistics, but for now one can still proceed and find the relationship between E and T , the
pressure, chemical potential µ, and other thermodynamical quantities.

• Boltzmann statistics: To correctly count microstates labelled by (q, p) for N indistinguishable 3D particles,
the correct measure for the space of states must include an N !, and we must use dΩ = d3Nq d3Np/N !h3N .

Reading

• Our textbook: Kennett, Ch 2 and parts of Ch 3. Other textbooks: in Plischke & Bergersen, §§ 2.1–2.3;
Halley, part of Ch 1; Mattis, §§ 4.1–4.4; Reif, Ch 3; Schwabl, Ch 2; Pathria & Beale, parts of Ch 1 and § 2.3.


