
1 feb 2021 classical distribution functions . L07–1

Classical Statistical Mechanics and The Distribution Function

What is Statistical Mechanics

• Conceptually: Statistical mechanics is a formalism developed to derive thermodynamic properties of a large
system and its macroscopic states (macrostates, here assumed to be time independent) from a fundamental
description in terms of microscopic states of its constituents (microstates, here assumed to be classical).

• Historically: Mid 1800s, phenomenological formulation of thermodynamics by Lord Kelvin and R Clausius;
Late 1800s, Kinetic theory and statistical mechanics, developed by L Boltzmann, J Gibbs and then others;
1900s, Understanding of the quantum basis and the correct description of microstates.

• What we will cover: Mostly equilibrium states, of which there are various types. We will start with the
microcanonical state, then switch to the canonical or grand canonical states. For these equilibrium states we
will show how thermodynamics is recovered in the thermodynamic limit N , V →∞ with N/V = constant.

Setup for Statistical Mechanics: Classical Phase Space

• Hamiltonian system: The type of system we will consider in this course, both classically and quantum
mechanically. The space of microstates is a phase space, a manifold Γ often of the form Γ = {(~rI , ~pI)} ⊆ IR6N

in terms of configuration and momentum variables for N particles, in which we know how to calculate Poisson
brackets {f, g} between two observables f(q, p) and g(q, p) and there is a special function governing time
evolution, the Hamiltonian H(q, p), usually written as a sum of kinertic and potential energies,

H(q, p) =
∑

I

~p 2
I

2mI

+ V (q, p) .

• Examples: For N free particles in a box of volume V = L1L2L3, the positions ~rI have values bounded by

the L1, the momenta ~pI ∈ IR3, and V (q, p) = 0. For N magnetic dipoles, V (q, p) = −
∑

I ~µI · ~B.

• Microstates and macrostates: A (pure) microstate is a full specification of the values for the phase-space
variables of the system at some time t, e.g., {(~rI , ~pI), I = 1, ..., N} for the particles in a gas. A macrostate is
a specification of the values for some complete set of thermodynamic variables, e.g., (N,V,E). In statistical
mechanics, each macrostate can correspond to different ensembles or collections of microstates, copies of the
system which give rise to the given macrostate, together with a probability for each microstate in it. This
probability distribution is used to determine the corresponding values of the macroscopic quantities for the
system: Some are just values of parameters characterizing the distribution, others can be found from mean
values or variances of observables calculated using the probability distribution.

• State counting, density of states: The volume of a region R of phase space is given by ω(R) =
∫
R

dω, with
dω = d3Nq d3Np the phase-space volume element. Using a constant h with the dimensions of an action,
whose value is to be determined later, we can think of Ω(R) =

∫
R

dΩ = h−3N
∫
R

d3Nq d3Np as the “number
of states” in R (we will soon see, however, that for a system of identical particles we need to modify this
definition of dΩ). Then, if Ω(E) is the number of states with energy H(q, p) ≤ E, the density of states is

g(E) = dΩ(E)/dE .

• Density/distribution function: A non-negative function ρ : Γ → IR giving the probability density for the
system to be in each microstate of an ensemble. In other words, the probability that the system is in a
region of volume dω around (q, p) ∈ Γ at time t is dP = ρ(q, p, t) dΩ. Thus, ρ is dimensionless and we will
always take it to be normalized to 1,

∫
Γ
ρ(q, p, t) dΩ = 1.

• Use of the distribution function: Like any probability density, ρ gives mean values of observables by

〈A〉 =

∫
Γ

dΩ ρ(q, p)A(q, p) ,

as well as fluctuations σ2
A = 〈(∆A)2〉. One of the main goals for this course is to determine ρ for some

interesting equilibrium systems, make sure that ρ is sharply peaked, and make physical predictions using ρ.

• Example: The δ-function distribution or “pure state” (all other classical states are considered “mixed”)

ρ(~r, ~p) = h3N
∏N

I=1
δ3(~rI − ~r 0

I ) δ3(~pI − ~p 0
I ) .
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Setup for Statistical Mechanics: Hamiltonian Dynamics

• Hamilton equations of motion: For a particle starting at a point (qi(t0), pi(t0)) in phase space (a pure
state), the Hamiltonian gives the time evolution through the equations of motion obtained from H(q, p),

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

These are special cases of the general fact that, for any observable A : Γ→ IR, we have

Ȧ =
∑
dof

(
∂A

∂qi
q̇i +

∂A

∂pi
ṗi

)
=
∑
dof

(
∂A

∂qi
∂H

∂pi
− ∂A

∂pi

∂H

∂qi

)
= {A,H} .

• Energy surface/shell: Because the value of the Hamiltonian, the energy, is conserved, a system that starts
with a certain value E of the energy will remain on the H(q, p) = E hypersurface in phase space. If the
energy is only known to be in a certain range of width ∆, then the system will remain in an energy shell
H(q, p) ∈ [E − 1

2 ∆, E + 1
2 ∆]. ? Examples: 1D free particle, oscillator.

• Liouville theorem: The value of the distribution function ρ is a constant along a trajectory (qi(t), pi(t)) in
phase space satisfying the equations of motion. In other words ρ evolves like an incompressible fluid, or

dρ

dt
=
∂ρ

∂t
+
∑
dof

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
= 0 .

Proof: The time rate of change of the probability
∫
R
ρ(q, p) dω of a region R in Γ must equal the flux of

probability −
∮
∂R
ρ~v · d ~A through its surface, which means that ρ must satisfy an equation of continuity,

0 =
∂ρ

∂t
+ ~∇ · (~v ρ) =

∂ρ

∂t
+
∑
dof

(
∂q̇i

∂qi
+
∂ṗi
∂pi

)
ρ+

∑
dof

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
=

dρ

dt
,

where ~v = (q̇1, q̇2, ..., q̇3N ; ṗ1, ṗ2, ..., ṗ3N ), because the terms in the first summation cancel by virtue of the
Hamilton equations of motion. The result would not hold, for example, for a dissipative system.

• Evolution of the distribution function: A consequence of the Liouville theorem is the Liouville equation,

ρ̇ ≡ ∂ρ

∂t
= −

∑
dof

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
= −{ρ, H} .

• Remark: Notice the difference between observables and distribution functions (all of which are functions on
phase space), related to the sign difference between the Liouville equation and the evolution of an observable
A(q, p) along the orbit of a point in phase space.

Comments

• Equilibrium distribution functions: Our systems of interest will be in thermodynamic equilibrium, so
they should be described by time-independent distribution functions. The condition that ∂ρ/∂t = 0 or,
equivalently, using Liouville’s theorem, {ρ,H} = 0, can be satisfied in different ways. One possibility is
that the energy E is fixed and known within some small uncertainty ∆E, and ρ(q, p) is constant over the
corresponding region of phase space, which expresses the assumption of equal a priori probabilities; this leads
to the microcanonical distribution. Other possibilities lead to the canonical and grand canonical distributions.
An important physical question is whether realistic systems actually approach these equilibrium states.

• Thermodynamic limit: The limit in which the number of particles and the volume of the system are taken
to infinity, holding the number density ρ := N/V fixed. In this limit, from results related to the central limit
theorem, the fractional fluctuations of statistical quantities go to zero and can be ignored.

Reading

• Kennett: Chapter 3.
• Other books: Chandler, Sec 3.1; Halley, First half of Ch 1; First half of Ch 2; Pathria & Beale, Beginning
of Chapter 1 and Chapter 2, Sections 2.1 and 2.2; Schwabl, Sec 1.3.


