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Review of Probability and Statistics

Probability Distribution

•Mathematically: A probability is a normalized measure on a sample space X of possible events or outcomes;
that is, for some collection A of subsets of X among which we can take set differences and countable unions,
a function P : A → IR taking A 3 A 7→ P (A) ≥ 0, which is countably additive and satisfies P (X) = 1.

• In physics: A probability distribution assigns a likelihood to each statement about a system S, identified
with the state of the system belonging to some subset of the set of all states. For example, for a classical
theory the sample space X or set of possible states is the classical phase space Γ of S. We are often interested
in finding the mean value 〈f〉 and uncertainty σ(f) or ∆f of functions f(x) of random variables x ∈ X.

• Discrete sample space: The set X is finite or countable. Examples are the possible outcomes for a coin
toss or a die (P (i) = 1

6 ), the states X = ZN2 for N spin- 1
2 particles, or the locations on an infinite lattice.

• Continuous sample space: The set X is parametrized as a subset of IRn, for some n. For example, the
phase space Γ = {(~x(i), ~p(i))} ⊆ IR6N for N pointlike particles in IR3. Here, what we often work with are
not the probabilities themselves, but probability densities; for example, if P (x) is a probability density on
IR, for any A ⊆ IR the probability is P (A) :=

∫
A
P (x) dx.

• Interpretation: The stated interpretation of probability in physics is usually frequentist (P (i) is the fraction
of times outcome i occurs as the number of trials becomes very large), but in practice the working meaning
of probability physicists use is Bayesian (an expectation or “degree of belief” in each possible event).

Characterizing a Probability Distribution

• Mean: The mean value of a function f(x) of a discrete or continuous random variable x is, respectively,

〈f〉 =
∑
i f(xi)P (xi) or 〈f〉 =

∫
X

dx f(x)P (x) .

• Variance: The mean-square deviation from the mean (squared uncertainty or variation),

σ(2)(f) = (∆f)2 := 〈(f − 〈f〉)2〉 = 〈f2〉 − 〈f〉2 .
• Higher-order moments: Defined using higher powers of the deviation; for all k, σ(k)(f) := 〈(f −〈f〉)k〉. For
example, σ(3)(f) is the skewness and σ(4)(f) the kurtosis. A probability distribution P (f) is characterized
by the set of all moments σ(k)(f), but in practice we will only use the first two, 〈f〉 and σ(2)(f).

Distributions with Several Variables: Independence and Correlations

• Joint probabilities: Given two subsets A, B ∈ A, the joint probability for both statements on the system
is P (A∩B) = P (A|B)P (B), where P (A|B) is the conditional probability for A given B. If the two subsets
are identified by giving the value of two variables x and y, we can write this is P (x, y) = P (x|y)P (y).

• Marginal probabilities: The unconditional probability P (x) for a set of variables x, regardless of the value
of some other variables y, is calculated as P (x) =

∫
dy P (x, y).

• Independent variables: Two variables x and y are statistically independent if the conditional probability
P (x|y) does not depend on the value of y, so for all values of x and y

P (x, y) = P (x)P (y) .

• Correlations: Given two observables f and g, we can define the correlation function by

σ(2)(f, g) := 〈fg〉 − 〈f〉〈g〉 .
• Special cases: If x and y are independent variables, the probabilities of obtaining any pair of values for
them factorize, and the correlation vanishes. Notice however that the correlation between random variables
is not enough to define their dependence structure; from σ(2)(f, g) = 0 we cannot conclude that f and g
are independent. The maximal correlation is obtained for f = g, for which σ(2)(f, f) = σ(2)(f), so the
correlation of an observable with itself is its variance. For this reason, one sometimes defines

corr(f, g) :=
〈fg〉 − 〈f〉〈g〉√

(〈f2〉 − 〈f〉2)(〈g2〉 − 〈g〉2)
.
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Examples of Discrete Probability Distributions

• Binomial: An event consists of N repetitions of a basic choice between two outcomes, with probabilities p
and q = 1− p, for some p ∈ [0, 1]. The probability that the first outcome occurs n times out of N is given by

P (N,n) =

(
N

n

)
pn qN−n .

The mean 〈n〉 and ∆n can be found using the generating function GN (p, q) :=
∑N
n=0 P (N,n) = (p+ q)N :

〈n〉 =
(
p
∂

∂p

)
G(p, q)

∣∣∣
q=1−p

= Np , 〈n2〉 =
(
p
∂

∂p

)2
G(p, q)

∣∣∣
q=1−p

= (Np)2 +Npq , or ∆n =
√
Npq .

In physics, a common application is to uncoupled spins, where the outcomes are the two possible values
s = ±h̄/2 for each spin, with probability parameter p depending on the temperature and external magnetic
field. A 1D spin chain of length N has a probability P (N,n) that n of the spins have value +1.

Another application is to the random walk. In 1D there are two elementary outcomes (left and right), with
probabilities p and q = 1 − p. A random walk of length N is a sequence of N independent steps, and the
probability of n of them to be to the right (say) is P (N,n).

• Poisson: Depends on a parameter µ. It is given by Pµ(n) = e−µµn/n! and one finds that 〈n〉 = (∆n)2 = µ.

One application is to Poisson point processes. When choosing a point at random in a manifold of volume V0,
the probability of it falling in a region R of volume V is p = V/V0. For N random points, the probability of
n of them falling inside R is P (N,n); as N →∞ with Np = constant, this becomes a Poisson distribution.

Examples of Continuous Probability Distributions

• Uniform probability density: Defined for compact manifolds with a measure. For example, on a rectangle
[0, a]× [0, b] ⊂ R2 we define P (x, y) = (ab)−1, and on the standard 2D sphere p(θ, φ) = (1/4π) sin θ.

• Gaussian: The 1D distribution with mean x̄ and standard deviation σ is Px̄,σ(x) = (2πσ2)−1/2 e−(x−x̄)2/2σ2

.

• Relationships: In the N →∞, p→ 0 limit, with Np = constant =: µ, the binomial P (N,n) becomes

P (N,n) ≈ Pµ(n) =
e−Np (Np)n

n!
,

while if N →∞ with p = constant, consistently with the general result of the central limit theorem we get,

P (N,n) ≈ Px̄,σ(x) , with x̄ = Np, σ2 = Npq .

• Law of large numbers: The well known and intuitive fact that if we make repeated measurements of the
outcome of independent random events, as the number of measurements increases the calculated average of
the values obtained will approach the mean of the quantity of interest. But we can make a more precise
statement, which specifies the limiting probability distribution for the values of the sample average.

• Central limit theorem: If a random variable is a sum s := x1 + x2 + ... + xN of independent, identically
distributed random variables xi with mean µ and standard deviation σ, then in the limit N → ∞ the
probability distribution for s approaches a Gaussian with mean 〈s〉 = Nµ and standard deviation σs =

√
N σ.

Similarly, for x := N−1
∑
i xi the probability distribution approaches a Gaussian with mean 〈s〉 = µ and

standard deviation σx = σ/
√
N . This makes thermodynamical quantities meaningful.

On Applications in Physics

• Concepts used: We will sometimes distinguish between the mean value of a physical quantity according to
a probability distribution (e.g., for an observable in phase space) and the average value of a quantity (e.g.,
over its time evolution). Variances will be used to estimate the fluctuations or uncertainties in those values,
and correlation functions will be important for fluctuation-dissipation theory and phase transitions.

Reading

• Course textbook: Kennett, § 1.2.
• Other books: Mattis & Swendsen, Ch 1; Reichl, App A; Reif, Ch 1 (very detailed discussion of random
walk and binomial distributions); Schwabl, §§ 1.2 (central limit theorem) and 1.5.1; Pathria & Beale does
not have a review of concepts of probability and statistics.


