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Review of Thermodynamics. 2: Potentials and First-Order Variables

Variational Statement of Second Law and Equilibrium Conditions

• Internal constraint: A partition of an equilibrium system at T (with values (N,V, ...), for the extensive

variables ~X) into two parts, followed by a variation in some of the parameter values for the subsystems away
from what they were in the original system. (In each part, of course, the changes of the various extensive
quantities must be related to each other by the first law of thermodynamics, as applied to the subsystem.)

• Entropy maximization: Consider an equilibrium system with given overall values of the extensive (E, ~X),
divide it into two subsystens 1 and 2, and impose an internal constraint in which we transfer energy between
the subsystems, δE2 = −δE1 without adding any overall δW or δQ. Then δS ≤ 0, because if we now
removed the constraint the system would (by assumption) approach equilibrium adiabatically and in such a

transformation (by the second law) the entropy increases. Thus, S(E, ~X) ≥ S(E, ~X, constraint).

• Energy minimization: If we impose an internal constraint on a system in which we vary the partial
entropies, with δS2 = −δS1, then the variation must lead to δE ≥ 0, because the total entropy S remained
constant, but if we removed the constraint the system would approach an equilibrium state of the same
energy E′ = E(S, ~X, constraint) and higher entropy S′ > S, and since entropy is (usually) an increasing
function of energy, we must have E′ > E.

Legendre Transforms and Auxiliary Potentials

• Motivation: The energy E is naturally a function of all extensive variables (S, V,N, ...), as can be seen for
example from the form of the thermodynamic identity for dE. We now introduce quantities with dimensions
of energy that have useful physical interpretations and simplify calculations in situations where we control
a different set of variables.

• Idea: Every pair of conjugate intensive-extensive variables can be used to replace one of the basic thermody-
namical variables by its conjugate one. Specifically, for each pair (fi, Xi) we can define a new thermodynamic
potential by the Legendre transformation A := E − fiXi (we can also use more than one pair of variables
to define A). The most important effect is seen in the form of the fundamental identity of thermodynamics,
where the role of E is taken over by A, using the fact that the definition of A implies

dA = dE −Xi dfi − fi dXi .

• Helmholtz free energy: It is defined as (many textbooks, including P&B, use the symbol A for it)

F := E − TS .

In terms of this potential, which for a neutral fluid is a function of (T, V,N, ...),

dF = −S dT − p dV + µdN + ... .

(Or µdN 7→
∑

i µi dNi for a multicomponent fluid.) From the definition, ∆F = ∆E−∆(TS) or ∆E−T ∆S
if T is constant, so F can be interpreted as the energy needed to put the system in place in an environment
at fixed T , since then an amount of energy Q =

∫
TdS = T∆S can be absorbed from the environment in

the form of heat. This is the function that is minimized in thermal equilibrium at fixed T , rather than E.

• Enthalpy: The quantity defined as
H := E + pV ,

and seen as a function of (S, p,N, ...), in terms of which the fundamental identity for a neutral fluid becomes

dH = T dS + V dp+ µdN + ... .

From ∆H = ∆E + ∆(pV ) or ∆E + p∆V if p is constant, H can be interpreted as the energy needed to put
a system in place in an environment at pressure p, taking into account the fact that the environment needs
to be pushed back to make space for the system, which requires an amount pV of work.
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• Gibbs free energy: The quantity defined as

G := E − TS + pV ,

and seen as a function of (T, p,N, ...), in terms of which the fundamental identity for a neutral fluid becomes

dG = −S dT + V dp+ µdN + ... .

It can be interpreted as the energy needed to put a system in place in an environment at temperature T
and pressure p, taking into account both the heat that can be absorbed from the environment and the work
required to make space for the system. This is why G is important for phase transitions.

• Grand potential: The quantity defined as

Ω := E − TS − µN ,

and seen as a function of (T, V, µ, ...), in terms of which the fundamental identity for a neutral fluid becomes

dΩ = −S dT − p dV −N dµ+ ... .

Euler and Gibbs-Duhem Relations

• Extensive functions: Using the fact that one variable in each conjugate pair is intensive, the first law can
be integrated to give expressions for the thermodynamic potentials. For a multi-component system, from

dE = T dS − p dV + µi dNi ,

(where a sum over values of repeated indices is implied) since S, V and Ni are extensive and T , p and µi

intensive, we can conclude that the energy can be written as

E = TS − pV + µiNi ,

a relationship known as Euler’s equation. From this it follows that the variations of all intensive variables
are related by the differential Gibbs-Duhem relation S dT − V dp+Ni dµi = 0, and that we can write

G = E − TS + pV = µiNi .

[But, for example, from dG = −S dT + V dp+ µi dNi we cannot conclude that G = −TS + pV + µiNi].

• Remarks: (1) Euler’s theorem can be invoked to make this argument more rigorous. (2) From G =
∑

i µiNi

we see that µi can be interpreted as the Gibbs free energy per particle of type i for the system in this state.

First-Order Quantities

• First derivatives of potentials: Given a complete set of thermodynamic variables and the corresponding
potential, each of the remaining thermodynamic variables seen so far can be obtained as a derivative of the
potential with respect to the conjugate one using the fundamental identity. For example, two expressions
for the pressure are

p = −∂E
∂V

∣∣∣
S,N

= −∂F
∂V

∣∣∣
T,N

.

Reading

• Kennett: Appendix B, Section B.3.

• Other books with summaries: Chandler, Secs 1.5–1.8 (this would be my suggestion for a quick review);
Halley, Second half of Ch 3; Kardar, Sec 1.7; Mattis & Swendsen, Sec 3.3; Plischke & Bergersen, Secs 1.3–1.4;
Reichl, Secs 3.5, 3.7; Reif, Secs 5.5–5.6; Schwabl, Sec 3.1-3.3.

• Good undergraduate-level textbooks with more complete treatments: Schroeder 2000; Huang 2010.

• Additional reference: J.J. Prentis & M.J. Obsniuk,
“Free energy in introductory physics,” Phys. Teach. 54, 91 (2016); http://dx.doi.org/10.1119/1.4940172


