
Physics 727: Assignment 5
(to be submitted by Tuesday, April 30, 2024)

You may find it helpful to review §6.1, §6.2, §7.3, §7.4, §8.1, §8.2, §9.2, and §9.3 of Kennett’s book.

1. A gas of ideal spinless fermions lives in a one-dimensional, periodic environment. The system is char-
acterized by a length 𝐿 and a repeat distance 𝑎. The dispersion relation connects each wave vector 𝑘 (or
momentum 𝑝 = ℏ𝑘) to a single-particle energy 𝜀𝑘 = −2𝑡 cos 𝑘𝑎. Here 𝑡 > 0 is an energy scale related to
the band width.

(a) Argue that the grand partition function is

𝒵 =
∏

𝑘

(
1 + 𝑒−𝛽(𝜀𝑘−𝜇)

)
,

where the product is over all allowed wave vectors

{ 2𝜋𝑛𝑁u𝑎
= 2𝜋𝑛

𝐿 ∶ 𝑛 = −
𝑁u
2 + 1,… ,

𝑁u
2 − 1,

𝑁u
2 }.

Here, 𝑁u = 𝐿∕𝑎 is the (positive integer) number of unit cells.
(b) If 𝑁u is very large, we can assume a continuum of allowed wave vector values that form a Brioullin

zone 𝑘 ∈ (−𝜋∕𝑎, 𝜋∕𝑎]. The wave vector spacing is ∆𝑘 = 2𝜋∕𝑁u𝑎 = 2𝜋∕𝐿 → 𝑑𝑘, and so we can let
the 𝑘-vector sum pass over to an integral:

∑

𝑘
= 1
∆𝑘

∑

𝑘
∆𝑘 = 𝐿

2𝜋 ∫𝑑𝑘.

Provide an integral representation of the grand potential Φ(𝑇, 𝜇) = −(1∕𝛽) ln𝒵 in the continuum
limit.

(c) Show that the fermion density is

𝑛(𝑇, 𝜇) = 𝑁
𝐿 = −1𝐿

𝜕Φ
𝜕𝜇

=∫𝑑𝑘
2𝜋

1
𝑒𝛽(𝜀𝑘−𝜇) + 1

.

(d) Compute 𝑛 in the 𝑇 → 0 limit. Note that, at zero temperature, the chemical potential of a fermi
gas is typically referred to as the fermi energy, 𝜇 = 𝐸𝐹 . Graph your result. You should be able to
reproduce the following (which I created in gnuplot).
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(e) Show that the compressibility of the fermion gas, 𝜕𝑛∕𝜕𝜇, has the following form at zero temperature:

𝜒(𝐸𝐹) = lim
𝑇→0
𝜇→𝐸𝐹

𝜕𝑛
𝜕𝜇

= 1
2𝜋𝑡𝑎

1
√
1 − (𝐸𝐹∕2𝑡)2

.

Explain that this is just the density of states, evaluated at the fermi energy. Show that the compress-
ibility diverges as one over the square root of the fermi energy at the top (𝐸𝐹 → 2𝑡) and bottom
(𝐸𝐹 → −2𝑡) of the energy band.

2. Consider a system of mass-𝑚 free bosons in three spatial dimensions, held at temperature 𝑇 = 1∕𝑘𝐵𝛽 and
chemical potential 𝜇. The corresponding grand potential is

Φ = 1
𝛽
[ln

(
1 − 𝑒𝛽𝜇)

)
+ 𝑉∫ 𝑑3𝑘

(2𝜋)3
ln
(
1 − 𝑒−𝛽(𝜀𝐤−𝜇)

)
],

where 𝜀𝐤 = ℏ2𝐤 ⋅ 𝐤∕2𝑚 = ℏ2𝑘2∕2𝑚 is the free-particle kinetic energy. Be sure to explain and justify the
presence of the first term in the brackets.

(a) Compute the particle density 𝑁∕𝑉. Show that it can be massaged into the form

𝑛(𝑇, 𝜇) = 𝑁
𝑉 = 1

𝑉
1

𝑒−𝛽𝜇 − 1
+ 1
4𝜋2

( 2𝑚
𝛽ℏ2

)
3∕2
𝐼0(𝑒𝛽𝜇),

where
𝐼𝑗(𝑧) =∫

∞

0

𝑥𝑗+1∕2𝑑𝑥
𝑧−1𝑒𝑥 − 1

.

(b) Plot 𝐼0(𝑧), 𝐼1(𝑧), and 𝐼2(𝑧) on the interval 𝑧 ∈ [0, 1]. Observe that the functions are smooth,monoton-
ically increasing, and bounded. Why have we focussed on this particular interval? What restrictions
are there on the values of 𝛽 and 𝜇?

f[z_, j_] := Integrate[x^(j + 1/2)/((1/z)*Exp[x] - 1), {x, 0, \[Infinity]}]
mesh = Range[50]/50.
vals0 = f[#, 0]& @ mesh
vals1 = f[#, 1]& @ mesh
vals2 = f[#, 2]& @ mesh
data0 = Transpose[{mesh, vals0}]
data1 = Transpose[{mesh, vals1}]
data2 = Transpose[{mesh, vals2}]
ListPlot[{data0, data1, data2}, PlotLabels -> {0, 1, 2}]
Table[f[1, j], {j, 0, 2}]
N[%]

(c) Compute the energy density 𝑈∕𝑉. Express it in terms of 𝐼1(𝑧).
(d) Imagine that a gas of bosons is held at fixed density 𝑛 = 𝑁∕𝑉 at a temperature high enough that its

lowest-energy state (the zero-momentum state with 𝜀𝟎 = 0) is not macroscopically occupied; i.e.,

1
𝑉

1
𝑒−𝛽𝜇 − 1

→ 0.

Think about what happens as the temperature is lowered up to the threshold where this term would
start contributing. Identify a temperature below which the constraint

𝑛(𝑇, 𝜇) = 1
4𝜋2

( 2𝑚
𝛽ℏ2

)
3∕2
𝐼0(𝑒𝛽𝜇),

which is used to determine 𝜇 in terms of the known 𝑛, can no longer be satisfied.


