Physics 727: Assignment 2

(to be submitted by Tuesday, February 27, 2024)

1. In class, we considered the quantum rigid rotor (discussed in §4.4.4 of Kennett’s book). The Hamiltonian for the spherically symmetric case is

$$
\hat{H}=\frac{1}{2 I} \hat{\mathbf{J}} \cdot \hat{\mathbf{J}}=\frac{1}{2 I} \hat{J}^{2}
$$

Here, I is the rotor's moment of inertia, and $\hat{\mathbf{J}}=\left(\hat{J}_{x}, \hat{J}_{y}, \hat{J}_{z}\right)$ is the vector of angular momentum operators. The states $|j, m\rangle$ are simulataneous eigenstates of \hat{J}^{2} and \hat{J}_{z}, viz.,

$$
\begin{aligned}
\hat{J}^{2}|j, m\rangle & =\hbar^{2} j(j+1)|j, m\rangle \text { with } j=0,1,2, \ldots \\
\text { and } \hat{J}_{z}|j, m\rangle & =\hbar m|j, m\rangle \text { with } m=-j,-j+1, \ldots, 0, \ldots, j-1, j
\end{aligned}
$$

(a) The corresponding partition function can be expressed as

$$
Z=\operatorname{tr} e^{-\beta \hat{H}}=\sum_{j=0}^{\infty} g_{j} e^{-\beta h_{j} \varepsilon_{0}}
$$

Reproduce the derivation in detail, and show that that $g_{j}=2 j+1, h_{j}=j(j+1)$, and $\varepsilon_{0}=\hbar^{2} / 2 I$.
(b) Plot the internal energy $U=-Z^{-1} d Z / d \beta$ and heat capacity $C_{V}=d U / d T$ of this system. For simplicity, work in units where $\varepsilon_{0}=k_{B}=1$. Note that there is no closed-from solution for the infinite sum in the partition function, so it is necessary to apply a cutoff, e.g., $\sum_{j=0}^{\infty} \approx \sum_{j=0}^{1000}$. Suggest a criterion for selecting the cutoff scale.

```
Z = Sum[(2 j + 1) Exp[-j (j + 1) \[Beta]], {j, 0, 1000}];
U = -D[Z, \[Beta]]/Z;
Plot[U /. \[Beta] -> 1/T, {T, 0, 1}]
CV = D[U /. \[Beta] -> 1/T, T];
Plot[CV, {T, 0.001, 3}, PlotRange -> All]
```

Comment on the shape of the C_{V} plot. (The peak is analogous to the Schottky anomaly in solids.)
(c) Integrate the ratio of specific heat to temperature, according to

$$
S=\int_{0}^{T} d T^{\prime} \frac{C_{V}\left(T^{\prime}\right)}{T^{\prime}}
$$

to obtain the entropy as a function of temperature. You will have to carry out the integral numerically for a mesh of T values. Comment on the resulting plot.

```
Table[NIntegrate[CV/T, {T, 0, Tmax}], {Tmax, 0.1*Range[30]}];
ListPlot[%]
```

2. A quantum system is defined by the Hamiltonian

$$
\hat{H} / \varepsilon_{0}=-|1\rangle\langle 2|-|2\rangle\langle 1|+|2\rangle\langle 3|+|3\rangle\langle 2|+\sum_{j=1}^{3} j|j\rangle\langle j| .
$$

Suppose that this system has reached equilibrium in contact with a heat bath of inverse temperature β.
(a) Compute the partition function $Z=\operatorname{tr} \exp (-\beta \hat{H})$. You should be able to show that

$$
Z=e^{-2 \beta \varepsilon_{0}}\left[1+2 \cosh \sqrt{3} \beta \varepsilon_{0}\right]
$$

(b) Find the Helmholtz free energy F.
(c) Find the internal energy U. Demonstrate that $U \rightarrow(2-\sqrt{3}) \varepsilon_{0}$ at low temperature and $U \rightarrow 2 \varepsilon_{0}$ at high temperature.
(d) Find the entropy S. Demonstrate that $S \rightarrow 0$ at low temperature and $S \rightarrow k_{B} \ln 3$ at high temperature.
3. The Hamiltonian for a one-electron system consists of a free-kinetic-energy term plus a finite-square-well potential that is $a=0.5 \mathrm{~nm}$ wide and $V_{0}=25 \mathrm{eV}$ deep. For these parameters, the finite well produces five bound states at the following energies (measured with respect to the energy zero at the lip of the well).

$$
\begin{aligned}
& \varepsilon_{1}=-23.877 \mathrm{eV} \\
& \varepsilon_{2}=-20.539 \mathrm{eV} \\
& \varepsilon_{3}=-15.095 \mathrm{eV} \\
& \varepsilon_{4}=-7.838 \mathrm{eV} \\
& \varepsilon_{5}=-0.218 \mathrm{eV}
\end{aligned}
$$

Suppose that the finite square well is itself centered within an infinite square well of width $L \gg a$. The remaining eigenstates (countably infinite, of energy $\varepsilon_{6}, \varepsilon_{7}, \varepsilon_{8}, \ldots$) exhibit energy levels quantized by the confinement to L.

(a) Produce simple analytical estimates for the energy levels in the two regimes, $\varepsilon_{1}, \ldots, \varepsilon_{5}$ and $\varepsilon_{6}, \varepsilon_{7}, \ldots$.
(b) Show that the partition function can be reliably approximated by

$$
Z=\sum_{j=1}^{5} e^{-\beta \varepsilon_{j}}+\frac{L}{\hbar} \sqrt{\frac{m_{e}}{2 \pi \beta}}
$$

(c) Show that the specific heat is just $C_{V}=k_{B} / 2$ in the macroscopic $(L \rightarrow \infty)$ limit. Explain why levels $\varepsilon_{1}, \ldots, \varepsilon_{5}$ make no contribution.
(d) Suppose that, instead of having a single width- a, depth- V_{0} well (an a-well) at its centre, the bottom of the width- L, infinite-depth well (L-well) is randomly sprinkled with a-wells. If b is average separation between a-wells, then $n=L /(a+b)$ is the total number of a-wells within the L-well, and $\eta=1 /(a+b)=n / L$ is their linear density. Argue that

$$
Z \approx n \sum_{j=1}^{5} e^{-\varepsilon_{j} / k_{B} T}+\frac{L}{h} \sqrt{2 \pi m_{e} k_{B} T}
$$

is a reasonable approximation in the regime $a \ll b \ll L$.
(e) Show that

$$
C_{V}=k_{B} \frac{d}{d\left(k_{B} T\right)}\left[\frac{\sum_{j=1}^{5} \varepsilon_{j} e^{-\varepsilon_{j} / k_{B} T}+k_{B} T\left(k_{B} T / E(b)\right)^{1 / 2}}{\sum_{j=1}^{5} e^{-\varepsilon_{j} / k_{B} T}+\left(k_{B} T / E(b)\right)^{1 / 2}}\right]
$$

where

$$
E(b)=\frac{0.4789 \mathrm{eV} \mathrm{~nm}^{2}}{(0.5 \mathrm{~nm}+b)^{2}}
$$

is an energy scale set by the average separation of the a-wells. You may find it helpful to note that $m_{e} c^{2}=0.511 \mathrm{MeV}$ and $h c=1240 \mathrm{eV} n m$.
(f) Suppose that $b=15 \mathrm{~nm}$. Plot the internal energy U and the heat capacity $C=d U / d T$ as a function of $k_{B} T$ over the domain $0.1 \mathrm{eV}<k_{B} T<50 \mathrm{eV}$. Identify where the Dulong-Petit law sets in. Compare this to the room temperature value, $k_{B} T_{\text {room }}=25.8 \mathrm{meV}$.

```
Ewell[b_] = 0.4789/(0.5 + b)^2
\Epsilon] = { -23.877, -20.539, -15.095, -7.838, -0.218 }
Z0 = Sum[Exp[-\[Epsilon][[i]]/kT], {i, 1, 5}]
Z1 = Sum[\[Epsilon][[i]] Exp[-\[Epsilon][[i]]/kT], {i, 1, 5}]
EO = Ewell[15]
U = (Z1 + kT (kT/EO)^(1/2))/(ZO + (kT/EO)^(1/2))
Plot[U, {kT, 0.1, 50}, PlotRange -> All]
Plot[CV, {kT, 0.1, 50}, PlotRange -> All]
```

