Physics 727: Assignment 2
(to be submitted by Tuesday, February 27, 2024)

1. In class, we considered the quantum rigid rotor (discussed in §4.4.4 of Kennett’s book). The Hamiltonian
for the spherically symmetric case is

Here, I is the rotor’s moment of inertia, and § = (J o J y,fz) is the vector of angular momentum operators.
The states | j, m) are simulataneous eigenstates of 2 and J, viz.,

J2|j,m) = h2j(j + 1)|j,m) with j =0,1,2,...,
and J,|j,m) = him|j,m) withm = —j,—j+1,..,0,..,j —1,].

(a) The corresponding partition function can be expressed as
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Reproduce the derivation in detail, and show that that g; = 2j + 1, h; = j(j + 1), and gy = h?/2I.

(b) Plot the internal energy U = —Z~'dZ/df and heat capacity C,y = dU/dT of this system. For

simplicity, work in units where ¢, = kg = 1. Note that there is no closed-from solution for the
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infinite sum in the partition function, so it is necessary to apply a cutoff, e.g., Z;io ~ ijo . Suggest

a criterion for selecting the cutoff scale.

Z =sum[(2 j + 1) Exp[-j (j + 1) \[Betall, {j, 0, 1000}]1;
U = -D[Z, \[Betall/Z;

Plot[U /. \[Betal -> 1/T, {T, 0, 1}]

CV =D[U /. \[Beta] -> 1/T, TI;

Plot[CV, {T, 0.001, 3}, PlotRange -> All]

Comment on the shape of the Cy, plot. (The peak is analogous to the Schottky anomaly in solids.)

(c) Integrate the ratio of specific heat to temperature, according to
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to obtain the entropy as a function of temperature. You will have to carry out the integral numerically
for a mesh of T values. Comment on the resulting plot.

Table[NIntegrate[CV/T, {T, O, Tmax}], {Tmax, 0.1*Range([30]1}];
ListPlot [%]

2. A quantum system is defined by the Hamiltonian
3
H/eo = =[12] = [2)(1] + 12)(3] + 13)2] + 2 jliX]-
Jj=1
Suppose that this system has reached equilibrium in contact with a heat bath of inverse temperature S.

(a) Compute the partition function Z = trexp(—BH). You should be able to show that

Z = e[ 1 + 2 cosh\/3Bg, .


https://en.wikipedia.org/wiki/Schottky_anomaly

(b) Find the Helmholtz free energy F.
(c) Find the internal energy U. Demonstrate that U — (2 — \/E)EO at low temperature and U — 2¢, at
high temperature.

(d) Find the entropy S. Demonstrate that S — 0atlow temperature and S — kg In 3 at high temperature.

3. The Hamiltonian for a one-electron system consists of a free-kinetic-energy term plus a finite-square-well
potential that is a = 0.5nm wide and V|, = 25eV deep. For these parameters, the finite well produces five
bound states at the following energies (measured with respect to the energy zero at the lip of the well).

& = —23.877eV
& = —20.539eV
g3 = —15.095¢eV
g, = —7.838eV
€5 = —0.218eV

Suppose that the finite square well is itself centered within an infinite square well of width L > a. The
remaining eigenstates (countably infinite, of energy &, €7, €5, ...) exhibit energy levels quantized by the
confinement to L.
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(a) Produce simple analytical estimates for the energy levels in the two regimes, ¢, ..., €5 and g, €7, ....

(b) Show that the partition function can be reliably approximated by
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(c) Show that the specific heat is just Cy, = kg /2 in the macroscopic (L — oo) limit. Explain why levels
€1, ... , €5 make no contribution.

(d) Suppose that, instead of having a single width-a, depth-V, well (an a-well) at its centre, the bottom
of the width-L, infinite-depth well (L-well) is randomly sprinkled with a-wells. If b is average sep-
aration between a-wells, then n = L/(a + b) is the total number of a-wells within the L-well, and
1 =1/(a + b) = n/L is their linear density. Argue that
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is a reasonable approximation in the regime a <« b <« L.



(e) Show that
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is an energy scale set by the average separation of the a-wells. You may find it helpful to note that
m,c?> = 0.511 MeV and hc = 1240 eV nm.

(f) Suppose that b = 15nm. Plot the internal energy U and the heat capacity C = dU/dT as a function
of kgT over the domain 0.1 eV < kgT < 50 eV. Identify where the Dulong-Petit law sets in. Compare
this to the room temperature value, kgT;oom = 25.8 meV.

Ewell[b_] = 0.4789/(0.5 + b)~2
\[Epsilon] = { -23.877, -20.539, -15.095, -7.838, -0.218 }

Z0 = Sum[Exp[-\[Epsilon] [[i]11/kT], {i, 1, 5}]
Z1 = Sum[\[Epsilon] [[i]] Exp[-\[Epsilon] [[i]1]1/kT], {i, 1, 5}]
EO = Ewell[15]

= (Z1 + kT (kT/E0)~(1/2))/(Z0 + (XT/E0)~(1/2))
Plot[U, {kT, 0.1, 50}, PlotRange -> All]
Plot[CV, {kT, 0.1, 50}, PlotRange -> All]




