Physics 727: Assignment 1

(to be submitted by Tuesday, February 13, 2024)

- 1. Given a square matrix A of dimension $n \times n$ with all nonnegative entries, prove that A is irreducible if $(I + A)^{n-1}$ has all positive entries.
- 2. Consider the permutation matrix

$$T = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

- (a) Draw a directed graph showing how the states $\{|1\rangle, |2\rangle, ..., |6\rangle$ are reconfigured in each time step. Note that there is no branching. Argue that the effect of *T* is simply to permute the entries of whatever 6-vector it acts on. You should be able to convince yourself that $T \simeq (153)(24)(6)$, which is the permutation expressed in cycle notation.
- (b) Determine whether *T* is irreducible. Contrast this with the result for the matrix representation of the permutation (123456).
- (c) Determine whether *T* describes a stochastic process that is periodic; if so, determine the period by finding the smallest interger k > 1 such that $T^k = I$.
- (d) Are there subspaces of smaller periodicity than what you reported in question 1(d)? If so, what are they?
- (e) Imagine that all the zero entries of *T* are replaced by a small postive value $0 < \epsilon \le 1/5$ and that all the unit entries are reduced accordingly to maintain the stochastic property:

Show that T_{ϵ} is aperiodic and irreducible (and hence ergodic).

- (f) Report the long-time equilibrium distribution $\pi^{\star} = \lim_{k \to \infty} (T_{\varepsilon})^k \pi^{(0)}$.
- (g) Speculate as to why even an infinitesimal value of ϵ is enough to restore ergodicity to the stochastic matrix.
- (h) What can you say about the timescale for the system to equilibrate and how it depends on ϵ ? For instance, if you have two such stochastic systems, one with $\epsilon = 0.01$ and one with $\epsilon = 0.02$, how would the equilibration times compare?
- 3. Consider the matrix

$$\begin{pmatrix} 1/2 & 1/3 & 1/6 \\ 1/3 & 1/6 & 1/2 \\ 1/6 & 1/2 & 1/3 \end{pmatrix}$$

- (a) List the properties that make *T* a doubly stochastic matrix.
- (b) Draw a directed graph showing how the states {|1⟩, |2⟩, |3⟩} are reconfigured in each time step. Label the branching probabilities.
- (c) Determine whether *T* is irreducible.

- (d) Determine whether *T* describes a stochastic process that is periodic; if so, determine the period by finding the smallest interger k > 1 such that $T^k = I$.
- (e) Report the long-time equilibrium distribution $\pi^* = \lim_{k \to \infty} T^k \pi^{(0)}$.
- (f) Show that it takes about 30 time steps for the system to equilibrate from an initial state $\pi_i^{(0)} = \delta_{i,2}$ to agreement with the final distribution π^* at the 1 in 10¹⁶ level (double-precision floating point accuracy on a computer).
- 4. Consider an *n*-state system in equilibrium. Each state i = 1, 2, ..., n is distributed according to probability π_i and has associated with it an energy ε_i and a particle occupancy N_i
 - (a) Suppose that the system is isolated from its environment so that the total energy $U = \sum_i \varepsilon_i \pi_i$ and total particle number $N = \sum_i N_i \pi_i$ are both held fixed. Augment the entropy $S = -\sum_i \pi_i \ln \pi_i$ with Lagrange multiplier terms in order to enforce the conservation of energy and particle number. Show that maximizing the entropy results in $\pi_i = Z^{-1} \exp(-\beta \varepsilon_i + \alpha N_i)$, where the normalization is given by the partition function $Z = \sum_i \exp(-\beta \varepsilon_i + \alpha N_i)$. (More commonly, one sees the expressions $Z = \sum_i \exp[-\beta(\varepsilon_i \mu N_i)]$, with the correspondence $\alpha = \beta \mu$.)
 - (b) Using the result of part (a), prove that the entopy can be expressed as $S = \ln Z + \beta U \alpha N$ (or $S = \ln Z + \beta U \beta \mu N$).
 - (c) Let's treat small variations $\pi_i \to \pi_i + \delta \pi_i$. Show that those variations obey $\sum_i \delta \pi_i = 0$ and lead to changes $\delta U = \sum_i \varepsilon_i \delta \pi_i$ and $\delta N = \sum_i N_i \delta \pi_i$ in the total energy and particle number.
 - (d) Demonstrate that such variations in the entropy are related to independent variations in the energy and particle number according to $\delta S = \beta \delta U \alpha \delta N$. Hence, the entropy S = S(U, N) has partial derivatives $\beta = \partial S / \partial U$ and $\alpha = -\partial S / \partial N$ (or $\mu = -\beta^{-1} \partial S / \partial N$)
- 5. Start from the partition function $Z(\beta, \alpha) = \sum_{i} \exp(-\beta \varepsilon_{i} \alpha N_{i})$ in question 4 and define an expectation value operation

$$\langle \cdot \rangle = \frac{1}{Z} \sum_{i} (\cdot) \exp(-\beta \varepsilon_i - \alpha N_i).$$

For a statistical ensemble in which β and α are the control parameters, the internal energy and total particle number fluctuate about their average values. Show that such fluctuations are given by

$$\langle (\Delta E)^2 \rangle = \langle E^2 \rangle - \langle E \rangle^2 = \frac{\partial^2 \ln Z}{\partial \beta^2}$$

and

$$\langle (\Delta N)^2 \rangle = \langle N^2 \rangle - \langle N \rangle^2 = \frac{\partial^2 \ln Z}{\partial \alpha^2}.$$

N.B.: $z = e^{\alpha}$ is often referred to as the fugacity; both α and z are dimensionless. The chemical potential $\mu = \alpha/\beta$ is a rescaled quantity having units of energy (the energy required to add or remove one particle from the equilibrated system). It is more common to express the Boltzmann factor as $\exp(-\beta\varepsilon_i + \alpha N_i) = \exp[-\beta(\varepsilon_i - \mu N_i)]$.