Physics 727: Assignment 1

(to be submitted by Tuesday, February 13, 2024)

1. Given a square matrix A of dimension $n \times n$ with all nonnegative entries, prove that A is irreducible if $(I+A)^{n-1}$ has all positive entries.
2. Consider the permutation matrix

$$
T=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

(a) Draw a directed graph showing how the states $\{|1\rangle,|2\rangle, \ldots,|6\rangle\}$ are reconfigured in each time step. Note that there is no branching. Argue that the effect of T is simply to permute the entries of whatever 6 -vector it acts on. You should be able to convince yourself that $T \simeq(153)(24)(6)$, which is the permutation expressed in cycle notation.
(b) Determine whether T is irreducible. Contrast this with the result for the matrix representation of the permutation (123456).
(c) Determine whether T describes a stochastic process that is periodic; if so, determine the period by finding the smallest interger $k>1$ such that $T^{k}=I$.
(d) Are there subspaces of smaller periodicity than what you reported in question 1(d)? If so, what are they?
(e) Imagine that all the zero entries of T are replaced by a small postive value $0<\epsilon \leq 1 / 5$ and that all the unit entries are reduced accordingly to maintain the stochastic property:

$$
T \rightarrow T_{\epsilon}=\left(\begin{array}{cccccc}
\epsilon & \epsilon & \epsilon & \epsilon & 1-5 \epsilon & \epsilon \\
\epsilon & \epsilon & \epsilon & 1-5 \epsilon & \epsilon & \epsilon \\
1-5 \epsilon & \epsilon & \epsilon & \epsilon & \epsilon & \epsilon \\
\epsilon & 1-5 \epsilon & \epsilon & \epsilon & \epsilon & \epsilon \\
\epsilon & \epsilon & 1-5 \epsilon & \epsilon & \epsilon & \epsilon \\
\epsilon & \epsilon & \epsilon & \epsilon & \epsilon & 1-5 \epsilon
\end{array}\right)
$$

Show that T_{ϵ} is aperiodic and irreducible (and hence ergodic).
(f) Report the long-time equilibrium distribution $\pi^{\star}=\lim _{k \rightarrow \infty}\left(T_{\epsilon}\right)^{k} \pi^{(0)}$.
(g) Speculate as to why even an infinitesimal value of ϵ is enough to restore ergodicity to the stochastic matrix.
(h) What can you say about the timescale for the system to equilibrate and how it depends on ϵ ? For instance, if you have two such stochastic systems, one with $\epsilon=0.01$ and one with $\epsilon=0.02$, how would the equilibration times compare?
3. Consider the matrix

$$
\left(\begin{array}{lll}
1 / 2 & 1 / 3 & 1 / 6 \\
1 / 3 & 1 / 6 & 1 / 2 \\
1 / 6 & 1 / 2 & 1 / 3
\end{array}\right)
$$

(a) List the properties that make T a doubly stochastic matrix.
(b) Draw a directed graph showing how the states $\{|1\rangle,|2\rangle,|3\rangle\}$ are reconfigured in each time step. Label the branching probabilities.
(c) Determine whether T is irreducible.
(d) Determine whether T describes a stochastic process that is periodic; if so, determine the period by finding the smallest interger $k>1$ such that $T^{k}=I$.
(e) Report the long-time equilibrium distribution $\pi^{\star}=\lim _{k \rightarrow \infty} T^{k} \pi^{(0)}$.
(f) Show that it takes about 30 time steps for the system to equilibrate from an initial state $\pi_{i}^{(0)}=\delta_{i, 2}$ to agreement with the final distribution π^{\star} at the 1 in 10^{16} level (double-precision floating point accuracy on a computer).
4. Consider an n-state system in equilibrium. Each state $i=1,2, \ldots, n$ is distributed according to probability π_{i} and has associated with it an energy ε_{i} and a particle occupancy N_{i}
(a) Suppose that the system is isolated from its environment so that the total energy $U=\sum_{i} \varepsilon_{i} \pi_{i}$ and total particle number $N=\sum_{i} N_{i} \pi_{i}$ are both held fixed. Augment the entropy $S=-\sum_{i} \pi_{i} \ln \pi_{i}$ with Lagrange multiplier terms in order to enforce the conservation of energy and particle number. Show that maximizing the entropy results in $\pi_{i}=Z^{-1} \exp \left(-\beta \varepsilon_{i}+\alpha N_{i}\right)$, where the normalization is given by the partition function $Z=\sum_{i} \exp \left(-\beta \varepsilon_{i}+\alpha N_{i}\right)$. (More commonly, one sees the expressions $Z=\sum_{i} \exp \left[-\beta\left(\varepsilon_{i}-\mu N_{i}\right)\right]$, with the correspondence $\alpha=\beta \mu$.)
(b) Using the result of part (a), prove that the entopy can be expressed as $S=\ln Z+\beta U-\alpha N$ (or $S=\ln Z+\beta U-\beta \mu N)$.
(c) Let's treat small variations $\pi_{i} \rightarrow \pi_{i}+\delta \pi_{i}$. Show that those variations obey $\sum_{i} \delta \pi_{i}=0$ and lead to changes $\delta U=\sum_{i} \varepsilon_{i} \delta \pi_{i}$ and $\delta N=\sum_{i} N_{i} \delta \pi_{i}$ in the total energy and particle number.
(d) Demonstrate that such variations in the entropy are related to independent variations in the energy and particle number according to $\delta S=\beta \delta U-\alpha \delta N$. Hence, the entropy $S=S(U, N)$ has partial derivatives $\beta=\partial S / \partial U$ and $\alpha=-\partial S / \partial N\left(\right.$ or $\left.\mu=-\beta^{-1} \partial S / \partial N\right)$
5. Start from the partition function $Z(\beta, \alpha)=\sum_{i} \exp \left(-\beta \varepsilon_{i}-\alpha N_{i}\right)$ in question 4 and define an expectation value operation

$$
\langle\cdot\rangle=\frac{1}{Z} \sum_{i}(\cdot) \exp \left(-\beta \varepsilon_{i}-\alpha N_{i}\right)
$$

For a statistical ensemble in which β and α are the control parameters, the internal energy and total particle number fluctuate about their average values. Show that such fluctuations are given by

$$
\left\langle(\Delta E)^{2}\right\rangle=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=\frac{\partial^{2} \ln Z}{\partial \beta^{2}}
$$

and

$$
\left\langle(\Delta N)^{2}\right\rangle=\left\langle N^{2}\right\rangle-\langle N\rangle^{2}=\frac{\partial^{2} \ln Z}{\partial \alpha^{2}}
$$

N.B.: $z=e^{\alpha}$ is often referred to as the fugacity; both α and z are dimensionless. The chemical potential $\mu=\alpha / \beta$ is a rescaled quantity having units of energy (the energy required to add or remove one particle from the equilibrated system). It is more common to express the Boltzmann factor as $\exp \left(-\beta \varepsilon_{i}+\alpha N_{i}\right)=$ $\exp \left[-\beta\left(\varepsilon_{i}-\mu N_{i}\right)\right]$.

