Physics 652: Assignment 5 (optional bonus)

(to be submitted by Thursday, May 2, 2024)

1. The Bessel function of the first kind of order v and of real argument x has a series expansion

$$
J_{v}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+v+1)}\left(\frac{x}{2}\right)^{2 k+v}
$$

(a) Compute the Wronskian of $J_{v}(x)$ and $J_{-v}(x)$.
(b) Argue that $J_{v}(x)$ and $J_{-v}(x)$ are linearly independent if v is not an integer.
2. The zeros $z_{n, k}$ of the nth Bessel function $J_{n}(x)$ are infinite in number. They are labelled $k=1,2,3, \ldots$ and satisfy $J_{n}\left(z_{n, k}\right)=0$. We can access them in Mathematica as follows.

```
N[BesselJZero[0, 1]]
BesselJ[0, BesselJZero[0, 1]]
Plot[Besselj[1, z], {z, 0, 15},
    Epilog -> {PointSize[0.03], Red,
    Point[Table[{BesselJZero[1, k], 0}, {k, 4}]]}]
```

(a) For large n and k, the zeros $z_{n, k}$ approach the limiting value $k \pi+(n+1) \pi / 2+\pi / 4$. Consider the zeros of J_{0}, J_{1}, J_{2}, and J_{3}. Plot the differences between successive zeros $\left(z_{n, k+1}-z_{n, k}\right)$ and show that they converge to the asymptotic value π.
(b) The function $f(x)$ is given by $f(x)=(1+x)(2-x)$ for all $x \in[0,2]$. Reproduce the function on that interval by computing the Fourier-Bessel series

$$
f(x)=x^{\alpha} \sum_{k=1}^{\infty} a_{k} J_{n}\left(z_{n, k} x / 2\right)
$$

with expansion coefficients

$$
a_{k}=\frac{1}{2\left[J_{n+1}\left(z_{n, k}\right)\right]^{2}} \int_{0}^{2} d y y^{1-\alpha} J_{n}\left(z_{n, k} y / 2\right) f(y) .
$$

You are free to choose a value of $0 \leq \alpha \leq 1$

```
f[x-] = (1+x)(2-x)
c[n-,k-] := 1/(2 BesselJ[n+1,BesselJZero[n,k]]^2)
Integrate[y^(1-\[Alpha])f[y] BesselJ[n,BesselJZero[n,k] y/2],{y,0,2}]
```

