Physics 652: Assignment 4

(to be submitted by Thursday, April 11, 2024)

1. Consider a very general forced and damped harmonic oscillator, modelled as

$$
m a=-k x-\eta v+f,
$$

where the spring constant $k(t)$, the dissipation coefficient $\eta(t)$, and the external forcing term $f(t)$ all have arbitrary time dependence. For convenience, let's work in units where the mass has a value $m=1$.
(a) Doubly integrate (from time 0 to time t)

$$
\ddot{x}=\frac{d^{2} x}{d t^{2}}=-k x-\eta \dot{x}+f=\frac{d}{d t}(-\eta x)+(\dot{\eta}-k) x+f
$$

to find the integral version of this differential equation. Assume that $x(0)=x_{0}$ and $\dot{x}(0)=v_{0}$ are known initial conditions. You should be able to derive a result of the form

$$
x(t)=x_{0}+u_{0} t+\int_{0}^{t} d t^{\prime}\left[\lambda\left(t, t^{\prime}\right) f\left(t^{\prime}\right)+\kappa\left(t, t^{\prime}\right) x\left(t^{\prime}\right)\right] .
$$

(b) Sample the time on a uniform, discrete mesh and approximate the integral in the Simpson's-rule sense in order to show that

$$
x_{i}=x_{0}+\Delta t\left\{i\left(v_{0}+\eta_{0} x_{0}\right)+\sum_{j=0}^{i}\left[\Delta t(i-j) f_{j}+\left[-\eta_{j}+\Delta t(i-j)\left(\dot{\eta}_{j}-k_{j}\right)\right] x_{j}\right]\right\}
$$

Here, $x_{i}=x(i \Delta t), v_{i}=\dot{x}(i \Delta t), f_{i}=f(i \Delta t)$, etc.
(c) Carry out the numerical integration with the model $f(t)=3 \cos 2 t, k(t)=1+2 t$, and $\eta(t)=4 e^{-t / 4}$ starting from $x(0)=10$ and $v(0)=-1$. This is straightforward to implement in your favourite programming language. (I did it in Julia, but it's just as easy in Python, c++, or Mathematica; the calculation can even be implemented as an Excel spreadsheet.) Compute and plot the evolution of $x(t)$ in the interval $t \in[0,10]$ with a step size of $\Delta t=0.01$. You should be able to reproduce the following plot.

2. The nonlinear differential equation $u_{t}+u u_{x}=0$, known as the inviscid Burgers' equation, is useful as a minimal model of a shock wave.
(a) This equation has an unusual implicit solution. Try the Ansatz $u(x, t)=f(x-u(x, t) t)$. Show that

$$
u_{t}=\frac{-u f^{\prime}}{1+t f^{\prime}} \text { and } u_{x}=\frac{f^{\prime}}{1+t f^{\prime}},
$$

and hence that $u_{t}+u u_{x}=0$.
(b) Argue that $d x / d t=u(x, t)$ is the local speed at every point in time and space.
(c) Prove that every point in the field moves at a constant speed; i.e., $d^{2} x / d t^{2}=0$.
(d) Suppose that the field is prepared in the initial state $u(x, 0)=f(x)=e^{-x^{2}}$, which triggers a rightmoving pulse. Determine the overtaking time or breaking time at which the pulse (whose shape changes) develops a vertical tangent and becomes multivalued.
(e) Given the following five (approximated) field snapshots at times $t \approx 0.34,0.68,1.02,1.36$, use your intuition and judgement to sketch the sixth and seventh. Explain what's happening in the Do loops and how that solves the differential equation.

```
f[x-] = Exp[-x^2];
u[x-] := f[x];
dt = 0.017;
p1 = Plot[u[x], {x, -2, 2}, Frame -> True];
Do[u[x-] = f[x - u[x]*i*dt], {i, 1, 20}];
p2 = Plot[u[x], {x, -2, 2}];
Do[u[x-] = f[x - u[x]*i*dt], {i, 21, 40}];
p3 = Plot[u[x], {x, -2, 2}];
Do[u[x-] = f[x - u[x]*i*dt], {i, 41, 60}];
p4 = Plot[u[x], {x, -2, 2}];
Do[u[x_] = f[x - u[x]*i*dt], {i, 61, 80}];
p5 = Plot[u[x], {x, -2, 2}];
Show[p1, p2, p3, p4, p5]
```


3. Use Mathematica to generate the Legendre polynomials via Rodrigues's formula and its explicit, Leibnitz-rule-based expansion. These expressions should agree with one another and with the output from the built-in LegendreP function. (This is for your own edification. There's nothing to submit for this question.)

```
RodriguesP[n_] := Simplify[D[(x^2 - 1)^n, {x, n}]/(2^n n!)]
RodriguesP[1]
RodriguesP[2]
RodriguesP[3]
CombP[n_] := Simplify[Sum[Binomial[n, k]^2 (x - 1)^(n - k) (x + 1)^k, {k, 0, n}]/2^n]
CombP[1]
CombP[2]
CombP[3]
LegendreP[1,x]
LegendreP[2,x]
LegendreP[3,x]
```

4. Complete each of the following (either by hand or with computational help):
(a) Find the expressions for $P_{5}(x)$ and $P_{7}(x)$ and compute $\lim _{x \rightarrow 0} P_{7}(x) / P_{5}(x)$.
(b) Demonstrate that

$$
P_{n}(0)=\frac{\sqrt{\pi}(-2)^{n}}{\Gamma\left(\frac{1-n}{2}\right) \Gamma\left(\frac{n+2}{2}\right)} .
$$

(c) Report the values $P_{5}(+1), P_{5}(-1), P_{10}(+1)$, and $P_{10}(-1)$.
(d) Evaluate the three integrals,

$$
\int_{-1}^{1} d x P_{5}(x) P_{10}(x), \quad \int_{-1}^{1} d x P_{5}(x) P_{5}(x), \text { and } \int_{-1}^{1} d x P_{10}(x) P_{10}(x)
$$

5. Expand the generating function $g(x, t)=\left(1-2 x t+t^{2}\right)^{-1 / 2}$ out to seventh order. Confirm that each coefficient of t^{n} in the expansion is the function $P_{n}(x)$ for all powers $n=0,1, \ldots, 6$. (Again, there's no need to submit anything for this question.)
```
g[x-, t_] := (1 - 2 x t + t^2)^(-1/2)
expansion7 = Map[Simplify, Series[g[x, t], {t, 0, 7}]]
Coefficient[expansion7, t, 2]
LegendreP[2,x]
Coefficient[expansion7, t, 3]
LegendreP[3,x]
```

6. The Legendre polynomials form a complete basis for the space of smooth functions defined on $[-1,1]$. Consider the function $f(x)=\sin (\pi x / 2) \cos (2 \pi x)$. It has an expansion

$$
f(x)=\sum_{n=0}^{\infty} \frac{2 n+1}{2} f_{n} P_{n}(x) \text { with coefficients } f_{n}=\int_{-1}^{1} d x P_{n}(x) f(x) .
$$

Produce plots of the approximate functions $f^{[m]}(x)=\sum_{n=0}^{m}(n+1 / 2) f_{n} P_{n}(x)$ corresponding to expansions truncated at some finite order m for each of $m=2,3, \ldots 10$; devise a measurement of the discrepancy between $f(x)$ and $f^{[m]}(x)$ that you can plot versus m. It should converge to zero as m gets large.

```
f[x_] = Sin[\[Pi] x/2]*Cos[2*\[Pi] x]
Plot[f[x], {x, -1, 1}]
ff[x_] = Sum[(2n+1)/2*LegendreP[n,x]*Integrate[LegendreP[n,x]*f[x],{x,-1,1}],{n,0,7}]
Plot[{f[x], ff[x]}, {x, -1, 1}]
```

7. In Mathematica, write a new function Rodrigues $\mathrm{P}[\mathrm{l}, \mathrm{m}]$ that computes the associated Legendre polynomial according to

$$
P_{l, m}(x)=\frac{\left(1-x^{2}\right)^{m / 2}}{2^{l} l!} \frac{d^{l+m}}{d x^{l+m}}\left(x^{2}-1\right)^{l} .
$$

(See https://mathworld.wolfram.com/SphericalHarmonic.html.) Confirm that

$$
Y_{l}^{m}(\theta, \phi)=(-1)^{m} \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l, m}(\cos \theta) e^{i m \phi}
$$

is identical to the built-in function SphericalHarmonicY[l, $\mathrm{m}, \backslash[$ Theta], $\backslash[$ Phi $]]$.

