
Physics 652: Assignment 4
(to be submitted by Thursday, April 11, 2024)

1. Consider a very general forced and damped harmonic oscillator, modelled as

𝑚𝑎 = −𝑘𝑥 − 𝜂𝑣 + 𝑓 ,

where the spring constant 𝑘 (𝑡), the dissipation coefficient 𝜂(𝑡), and the external forcing term 𝑓 (𝑡) all have
arbitrary time dependence. For convenience, let’s work in units where the mass has a value 𝑚 = 1.

(a) Doubly integrate (from time 0 to time 𝑡)

¥𝑥 =
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 − 𝜂 ¤𝑥 + 𝑓 =

𝑑

𝑑𝑡
(−𝜂𝑥) + ( ¤𝜂 − 𝑘)𝑥 + 𝑓

to find the integral version of this differential equation. Assume that 𝑥(0) = 𝑥0 and ¤𝑥(0) = 𝑣0 are
known initial conditions. You should be able to derive a result of the form

𝑥(𝑡) = 𝑥0 + 𝑢0𝑡 +
∫ 𝑡

0
𝑑𝑡′

[
𝜆(𝑡, 𝑡′) 𝑓 (𝑡′) + 𝜅(𝑡, 𝑡′)𝑥(𝑡′)

]
.

(b) Sample the time on a uniform, discrete mesh and approximate the integral in the Simpson’s-rule
sense in order to show that

𝑥𝑖 = 𝑥0 + Δ𝑡

{
𝑖(𝑣0 + 𝜂0𝑥0) +

𝑖∑︁
𝑗=0

[
Δ𝑡 (𝑖 − 𝑗) 𝑓 𝑗 +

[
−𝜂 𝑗 + Δ𝑡 (𝑖 − 𝑗) ( ¤𝜂 𝑗 − 𝑘 𝑗)

]
𝑥 𝑗

]}
Here, 𝑥𝑖 = 𝑥(𝑖Δ𝑡), 𝑣𝑖 = ¤𝑥(𝑖Δ𝑡), 𝑓𝑖 = 𝑓 (𝑖Δ𝑡), etc.

(c) Carry out the numerical integration with the model 𝑓 (𝑡) = 3 cos 2𝑡, 𝑘 (𝑡) = 1 + 2𝑡, and 𝜂(𝑡) = 4𝑒−𝑡/4
starting from 𝑥(0) = 10 and 𝑣(0) = −1. This is straightforward to implement in your favourite
programming language. (I did it in Julia, but it’s just as easy in Python, c++, or Mathematica; the
calculation can even be implemented as an Excel spreadsheet.) Compute and plot the evolution of
𝑥(𝑡) in the interval 𝑡 ∈ [0, 10] with a step size of Δ𝑡 = 0.01. You should be able to reproduce the
following plot.
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2. The nonlinear differential equation 𝑢𝑡 + 𝑢𝑢𝑥 = 0, known as the inviscid Burgers’ equation, is useful as a
minimal model of a shock wave.

(a) This equation has an unusual implicit solution. Try the Ansatz 𝑢(𝑥, 𝑡) = 𝑓 (𝑥 − 𝑢(𝑥, 𝑡)𝑡). Show that

𝑢𝑡 =
−𝑢 𝑓 ′

1 + 𝑡 𝑓 ′
and 𝑢𝑥 =

𝑓 ′

1 + 𝑡 𝑓 ′
,

and hence that 𝑢𝑡 + 𝑢𝑢𝑥 = 0.
(b) Argue that 𝑑𝑥/𝑑𝑡 = 𝑢(𝑥, 𝑡) is the local speed at every point in time and space.
(c) Prove that every point in the field moves at a constant speed; i.e., 𝑑2𝑥/𝑑𝑡2 = 0.
(d) Suppose that the field is prepared in the initial state 𝑢(𝑥, 0) = 𝑓 (𝑥) = 𝑒−𝑥

2 , which triggers a right-
moving pulse. Determine the overtaking time or breaking time at which the pulse (whose shape
changes) develops a vertical tangent and becomes multivalued.

(e) Given the following five (approximated) field snapshots at times 𝑡 ≈ 0.34, 0.68, 1.02, 1.36, use your
intuition and judgement to sketch the sixth and seventh. Explain what’s happening in the Do loops
and how that solves the differential equation.

f[x_] = Exp[-x^2];
u[x_] := f[x];
dt = 0.017;
p1 = Plot[u[x], {x, -2, 2}, Frame -> True];
Do[u[x_] = f[x - u[x]*i*dt], {i, 1, 20}];
p2 = Plot[u[x], {x, -2, 2}];
Do[u[x_] = f[x - u[x]*i*dt], {i, 21, 40}];
p3 = Plot[u[x], {x, -2, 2}];
Do[u[x_] = f[x - u[x]*i*dt], {i, 41, 60}];
p4 = Plot[u[x], {x, -2, 2}];
Do[u[x_] = f[x - u[x]*i*dt], {i, 61, 80}];
p5 = Plot[u[x], {x, -2, 2}];
Show[p1, p2, p3, p4, p5]
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3. Use Mathematica to generate the Legendre polynomials via Rodrigues’s formula and its explicit, Leibnitz-
rule-based expansion. These expressions should agree with one another and with the output from the
built-in LegendreP function. (This is for your own edification. There’s nothing to submit for this question.)

RodriguesP[n_] := Simplify[D[(x^2 - 1)^n, {x, n}]/(2^n n!)]
RodriguesP[1]
RodriguesP[2]
RodriguesP[3]
CombP[n_] := Simplify[Sum[Binomial[n, k]^2 (x - 1)^(n - k) (x + 1)^k, {k, 0, n}]/2^n]
CombP[1]
CombP[2]
CombP[3]
LegendreP[1,x]
LegendreP[2,x]
LegendreP[3,x]

4. Complete each of the following (either by hand or with computational help):

(a) Find the expressions for 𝑃5(𝑥) and 𝑃7(𝑥) and compute lim𝑥→0 𝑃7(𝑥)/𝑃5(𝑥).
(b) Demonstrate that

𝑃𝑛 (0) =
√
𝜋(−2)𝑛

Γ
( 1−𝑛

2
)
Γ
(
𝑛+2

2
) .

(c) Report the values 𝑃5(+1), 𝑃5(−1), 𝑃10(+1), and 𝑃10(−1).
(d) Evaluate the three integrals,∫ 1

−1
𝑑𝑥 𝑃5(𝑥)𝑃10(𝑥),

∫ 1

−1
𝑑𝑥 𝑃5(𝑥)𝑃5(𝑥), and

∫ 1

−1
𝑑𝑥 𝑃10(𝑥)𝑃10(𝑥).

5. Expand the generating function 𝑔(𝑥, 𝑡) = (1 − 2𝑥𝑡 + 𝑡2)−1/2 out to seventh order. Confirm that each
coefficient of 𝑡𝑛 in the expansion is the function 𝑃𝑛 (𝑥) for all powers 𝑛 = 0, 1, . . . , 6. (Again, there’s no
need to submit anything for this question.)

g[x_, t_] := (1 - 2 x t + t^2)^(-1/2)
expansion7 = Map[Simplify, Series[g[x, t], {t, 0, 7}]]
Coefficient[expansion7, t, 2]
LegendreP[2,x]
Coefficient[expansion7, t, 3]
LegendreP[3,x]



6. The Legendre polynomials form a complete basis for the space of smooth functions defined on [−1, 1].
Consider the function 𝑓 (𝑥) = sin(𝜋𝑥/2) cos(2𝜋𝑥). It has an expansion

𝑓 (𝑥) =
∞∑︁
𝑛=0

2𝑛 + 1
2

𝑓𝑛𝑃𝑛 (𝑥) with coefficients 𝑓𝑛 =

∫ 1

−1
𝑑𝑥 𝑃𝑛 (𝑥) 𝑓 (𝑥).

Produce plots of the approximate functions 𝑓 [𝑚] (𝑥) = ∑𝑚
𝑛=0(𝑛+1/2) 𝑓𝑛𝑃𝑛 (𝑥) corresponding to expansions

truncated at some finite order 𝑚 for each of 𝑚 = 2, 3, . . . 10; devise a measurement of the discrepancy
between 𝑓 (𝑥) and 𝑓 [𝑚] (𝑥) that you can plot versus 𝑚. It should converge to zero as 𝑚 gets large.

f[x_] = Sin[\[Pi] x/2]*Cos[2*\[Pi] x]
Plot[f[x], {x, -1, 1}]
ff[x_] = Sum[(2n+1)/2*LegendreP[n,x]*Integrate[LegendreP[n,x]*f[x],{x,-1,1}],{n,0,7}]
Plot[{f[x], ff[x]}, {x, -1, 1}]

7. In Mathematica, write a new function RodriguesP[l,m] that computes the associated Legendre polynomial
according to

𝑃𝑙,𝑚(𝑥) =
(1 − 𝑥2)𝑚/2

2𝑙𝑙!
𝑑𝑙+𝑚

𝑑𝑥𝑙+𝑚
(𝑥2 − 1)𝑙 .

(See https://mathworld.wolfram.com/SphericalHarmonic.html.) Confirm that

𝑌𝑚
𝑙 (𝜃, 𝜙) = (−1)𝑚

√︄
2𝑙 + 1

4𝜋
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃𝑙,𝑚(cos 𝜃)𝑒𝑖𝑚𝜙

is identical to the built-in function SphericalHarmonicY[l,m,\[Theta],\[Phi]].

https://mathworld.wolfram.com/SphericalHarmonic.html

