Physics 652: Assignment 4
(to be submitted by Thursday, April 11, 2024)

1. Consider a very general forced and damped harmonic oscillator, modelled as

ma=—-kx-nv+f,

where the spring constant k(z), the dissipation coefficient 7(¢), and the external forcing term f(¢) all have
arbitrary time dependence. For convenience, let’s work in units where the mass has a value m = 1.

(a)

(b)

(©)

Doubly integrate (from time O to time #)
d? d
X= _dt;C =—kx-nx+f= —dt(—nx) +(m—k)x+f

to find the integral version of this differential equation. Assume that x(0) = x¢ and x(0) = vq are
known initial conditions. You should be able to derive a result of the form

x(t) = xo + uot + /tdt’ [A(t, ) F(&) + k(t,0)x(2)].
0

Sample the time on a uniform, discrete mesh and approximate the integral in the Simpson’s-rule
sense in order to show that

X =x0+ At{i(vo +0x0) + | Atli = ) fy + [+ el = ) Gy - kj)]xj]}
7=0

Here, x; = x(iAt), v; = Xx(iAt), f; = f(iAt), etc.

Carry out the numerical integration with the model f(¢) = 3 cos2¢, k(t) = 1 +2¢, and 5(z) = 4e™*/*
starting from x(0) = 10 and v(0) = —1. This is straightforward to implement in your favourite
programming language. (I did it in Julia, but it’s just as easy in Python, c++, or Mathematica; the
calculation can even be implemented as an Excel spreadsheet.) Compute and plot the evolution of
x(t) in the interval ¢ € [0, 10] with a step size of At = 0.01. You should be able to reproduce the
following plot.
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2. The nonlinear differential equation u, + uu, = 0, known as the inviscid Burgers’ equation, is useful as a
minimal model of a shock wave.

(a) This equation has an unusual implicit solution. Try the Ansatz u(x, ) = f(x — u(x,t)t). Show that

—uf’ I’
due=—"—,
1L+tf ane tx 1L+tf

Ur =

and hence that u, + uu, = 0.
(b) Argue that dx/dt = u(x, t) is the local speed at every point in time and space.
(c) Prove that every point in the field moves at a constant speed; i.e., d’x/dt*> = 0.

(d) Suppose that the field is prepared in the initial state u(x,0) = f(x) = e=*", which triggers a right-
moving pulse. Determine the overtaking time or breaking time at which the pulse (whose shape
changes) develops a vertical tangent and becomes multivalued.

(e) Given the following five (approximated) field snapshots at times ¢ ~ 0.34,0.68, 1.02, 1.36, use your
intuition and judgement to sketch the sixth and seventh. Explain what’s happening in the Do loops
and how that solves the differential equation.

flx_] = Exp[-x"2];

ulx-1 = fIx];

dt = 0.017;

pl = Plot[ulx], {x, -2, 2}, Frame -> Truel;
Dofulx_] = fIx - ulx]xixdt], {i, 1, 20}];
p2 = Plot[ulx], {x, -2, 2}];

Dof[u[x_] = f[x - ul[x]=ixdt], {i, 21, 40}];
p3 = Plot[ulx], {x, -2, 2}];

Do[u[x_] = f[x - ul[x]xixdt], {i, 41, 60}];
p4 = Plot[ul[x], {x, -2, 2}1;

Dofu[x_] = f[x - u[x]*ixdt], {i, 61, 80}1;
p5 = Plot[ulx], {x, -2, 2}1;

Show[pl, p2, p3, p4, p5]
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3. Use Mathematica to generate the Legendre polynomials via Rodrigues’s formula and its explicit, Leibnitz-
rule-based expansion. These expressions should agree with one another and with the output from the
built-in LegendreP function. (This is for your own edification. There’s nothing to submit for this question.)

RodriguesP[n_] := Simplify[D[(x"2 - 1)”n, {x, n}1/(2”n n!)]
RodriguesP[1]

RodriguesP[2]

RodriguesP[3]

CombP[n_] := Simplify[Sum[Binomiall[n, k]*2 (x - 1)™(n - k) (x + 1)~k, {k, 0, n}]/2"n]
CombP[1]

CombP[2]

CombP[3]

LegendreP[1,x]

LegendreP[2,x]

LegendreP[3,x]

4. Complete each of the following (either by hand or with computational help):

(a) Find the expressions for Ps(x) and P7(x) and compute lim,_,g P7(x)/Ps(x).
(b) Demonstrate that
VE(=2)"

P,(0) =

(c) Report the values Ps(+1), Ps(—1), Pip(+1), and Pio(—1).
(d) Evaluate the three integrals,

1 1 1
/ dx Ps(x)P1o(x), / dx Ps(x)Ps(x), and / dx P1o(x)P1o(x).
-1 -1 -1

5. Expand the generating function g(x,7) = (1 — 2xt + 12)~!/2 out to seventh order. Confirm that each
coefficient of #"* in the expansion is the function P, (x) for all powers n = 0, 1,...,6. (Again, there’s no
need to submit anything for this question.)

glx_, t_] = (1 - 2 xt+ t72)"(-1/2)

expansion7 = Map[Simplify, Series[g[x, t], {t, 0, 7}11
Coefficient[expansion7, t, 2]

LegendreP[2,x]

Coefficient[expansion7, t, 3]

LegendreP[3,x]




6. The Legendre polynomials form a complete basis for the space of smooth functions defined on [—1, 1].
Consider the function f(x) = sin(mx/2) cos(2zx). It has an expansion

o 2n + 1 !
= nPn ith flici n= d Pn .
f(x) nZ:O > fuPn(x) with coefficients f, /_ 1 x P, (x)f(x)

Produce plots of the approximate functions 1”1 (x) = 2oty (n+1/2) fu Pn(x) corresponding to expansions
truncated at some finite order m for each of m = 2,3,...10; devise a measurement of the discrepancy
between f(x) and £ (x) that you can plot versus m. It should converge to zero as m gets large.

fix_] = Sin[\[Pi] x/2]*Cos[2*\[Pi] x]

Plot[f[x], {x, -1, 1}]

ff[x_] = Sum[(2n+1)/2*xLegendreP[n,x]*xIntegrate[LegendreP[n,x]*f[x],{x,-1,1}1,{n,0,7}]
Plot[{f[x], ffIx1}, {x, -1, 1}]

7. In Mathematica, write a new function RodriguesP[1,m] that computes the associated Legendre polynomial
according to

(1 _ x2)m/2 4i+m (x2 ~ 1)1

2101 dx!+m '

(See https://mathworld.wolfram.com/SphericalHarmonic.html.) Confirm that

Pl,m(x) =

2+1(1-m)!

I (Uamy ! bm(eos 6)e™?

Y6, ¢) = (-D)"

is identical to the built-in function SphericalHarmonicY[1,m,\[Theta],\[Phi]].


https://mathworld.wolfram.com/SphericalHarmonic.html

