
Physics 652: Assignment 3
(to be submitted by Tuesday, March 26, 2024)

1. The trajectory 𝑥(𝑡) obeys the differential equation

¥𝑥 + 𝛼 ¤𝑥 + 2𝑒−𝛼𝑡𝑥 = 0,

where 𝛼 = 1/10, subject to the initial conditions 𝑥(0) = 1, ¤𝑥(0) = −1. For this system, Mathematica is
able to generate both numerical and analytical solutions:

sol1 = NDSolve[{x''[t] + (1/10) x'[t] + 2 Exp[-t/10] x[t] == 0,
x[0] == 1, x'[0] == -1}, x, {t, 0, 100}]

Plot[Evaluate[x[t] /. sol1], {t, 0, 100}, PlotRange -> All]
sol2 = DSolve[{x''[t] + (1/10) x'[t] + 2 Exp[-t/10] x[t] == 0,

x[0] == 1, x'[0] == -1}, x, t]
Plot[x[t] /. sol2, {t, 0, 100}, PlotRange -> All]

Solve for 𝑥(𝑡) by assuming a series solution of the form

𝑥(𝑡) = 𝑡𝑟
∞∑︁
𝑛=0

𝑎𝑛𝑡
𝑛.

You should be able to show that

𝑥(𝑡) = 1 − 𝑡 − 19
20

𝑡2 + 239
600

𝑡3 +𝑂 (𝑡4).

Here is a quick check that those coefficients are correct:

N[Coefficient[Series[First[x[t] /. sol2], {t, 0, 5}], t, {1, 2, 3}]]
N[{-1, -19/20, 239/600}]

At this level of approximation, deviations from the exact solution become significant around 𝑡 ≈ 1:

Plot[{x[t] /. sol2, 1 - t - (19/20) t^2 + (239/600) t^3}, {t, 0, 2}, PlotRange -> All]

2. A gas of molecules is held in a closed container. At any given moment, some portion of the gas, of mass
𝑚, has deposited on (and adhered to) the interior surface of the container. We refer to this as the adsorbate.
The remaining mass 𝜇 remains in vapor form. Mass sublimates from the surface at a uniform rate 𝛼, and
there is a flux of molecules returning to the surface, denoted by 𝛽. Finally, the chamber is being evacuated
by a pump at a rate 𝛾. This picture leads to a coupled pair of rate equations:

¤𝑚 = −𝛼𝑚 + 𝛽𝜇

¤𝜇 = +𝛼𝑚 − (𝛽 + 𝛾)𝜇

(a) Determine the general time-dependent solutions 𝑚(𝑡) and 𝜇(𝑡) in terms of 𝛼, 𝛽, 𝛾 and the initial
conditions 𝑚(0) = 𝑚0 and 𝜇(0) = 𝜇0.

(b) Show that, for fast pumping 𝛾 ≫ 𝛼, 𝛽 and times 𝑡 ≫ (𝛾 + 𝛽 + 𝛼𝛽/𝛾)−1, the mass deposited on the
container walls decays according to

𝑚(𝑡) = 𝑚0

(
1 + 𝛽 − 𝛼

𝛾
+ 𝛼𝛽

𝛾2

)
𝑒−𝛼(1−𝛽/𝛾)𝑡 .



3. The function 𝑦(𝑥) is the solution to the second-order differential equation

𝑦′′ + 3𝑥2𝑦 + 𝑥3𝑦′ = 1.

Use the exactness property to show that

𝑦(𝑥) = 𝑒−𝑥
4/4

[
𝑦(0) +

∫ 𝑥

0
𝑑𝜉

(
𝑦′(0) + 𝜉

)
𝑒 𝜉

4/4
]
.

4. Solve the eigenvalue problem 𝐿0𝑦 = 𝜆𝑦 for the function 𝑦(𝑥) defined on the interval [0, 1] with boundary
conditions 𝑦(0) = 𝑦(1) = 0. The differential operator is

𝐿0 =
𝑑2

𝑑𝑥2 + 2
𝑑

𝑑𝑥
+ 2.

(a) Separately examine the cases 𝜆 < 1, 𝜆 = 1, and 𝜆 > 1. Be sure to report the form of the 𝑦(𝑥)
eigenfunctions and the allowed values of the 𝜆 eigenvalues.

(b) Put the problem into Sturm-Liouville form, 𝐿𝑢 = 𝜆𝜌𝑢, with a weight function 𝜌(𝑥) = 𝑒2𝑥 . (Be
aware that 𝐿 ≠ 𝐿0.) Show that the set of eigenfunctions {𝑢𝑛 (𝑥) : 𝑛 = 1, 2, 3, . . .} is orthonormal
with respect to the inner product (𝑎, 𝑏) =

∫ 1
0 𝜌(𝑥) 𝑑𝑥 𝑎(𝑥)𝑏(𝑥).

(c) Have a look at the Green’s function

𝐺 (𝑥, 𝑥′) =
∞∑︁
𝑛=1

𝑢𝑛 (𝑥)𝑢𝑛 (𝑥′)
𝜆𝑛

=
1
2

∞∑︁
𝑛=1

𝑒−𝑥−𝑥
′ sin(𝑛𝜋𝑥) sin(𝑛𝜋𝑥′)

1 − 𝑛2𝜋2 .

G[x_, y_] = (1/2) Sum[Exp[-x - y] Sin[n \[Pi] x] Sin[n \[Pi] y] / (1 + n^2
\[Pi]^2), {n, 1, 10000}];

DensityPlot[G[x, y], {x, 0, 1}, {y, 0, 1}]

Prove that it’s is a solution to the differential equation 𝐿𝐺 (𝑥, 𝑥′) = 𝛿(𝑥 − 𝑥′).


