Physics 652: Assignment 2

(to be submitted by Thursday, February 22, 2024)

1. A function $F(x)$ has slope $u=d F / d x$. The Legendre transformation gives us a new function $G(u)=F-u x$ that is an explicit function of the slope.
(a) Explain what f is in the expression $G(u)=F\left(f^{-1}(u)\right)-u f^{-1}(u)$.
(b) Use Mathematica to make a nice plot of the function $F(x)=-x^{3}+x^{2}+2 x$ between -1 and 2 . Then use this code snippet
```
F[x-] = - x^3 + x^2 + 2 x
f = F'
Solve[f[x] == u, x]
{sol1, sol2} = Solve[f[x] == u, x]
G1[u_] = Simplify[F[x /. soll] - u (x /. soll)]
Plot[{G1[u], G2[u]}, {u, -2, 7/3}]
```

to construct and plot functions of the form $G(u)=F(x)-u x$. Why are there two? Explain what's going on in the plot of $G(u)$ versus u and what the relation is to the plot you made of $F(x)$ versus x.
2. Consider a system in coordinates q and \dot{q}, described by a Lagrangian

$$
L(q, \dot{q})=\frac{m}{2!} \dot{q}^{2}+\frac{\kappa}{4!} \dot{q}^{4}-\frac{m \omega_{0}^{2}}{2!} q^{2}-\frac{\lambda}{4!} q^{4} .
$$

(a) Derive the dynamical equations prescribed by Euler-Lagrange. You should be able to show that

$$
\ddot{q}=-\omega_{0}^{2} q\left(\frac{1-\left(\lambda / 6 m \omega_{0}^{2}\right) q^{2}}{1+(\kappa / 2 m) \dot{q}^{2}}\right) .
$$

(b) Apply the Ansatz $q(t)=A \cos \omega_{0} t+\delta q(t)$. Derive the leading order expression for $\delta \ddot{q}$.
(c) Compute the conjugate momentum $p \equiv \partial L / \partial \dot{q}$.
(d) The corresponding Hamiltonian is

$$
H=\frac{p^{2}}{2 m}-\frac{\kappa p^{4}}{24 m^{4}}+\frac{\kappa^{2} p^{6}}{72 m^{7}}-\frac{\kappa p^{8}}{144 m^{10}}+O\left(p^{10}\right)+\frac{m \omega_{0}^{2} q^{2}}{2}+\frac{\lambda q^{4}}{24} .
$$

Verify by hand the terms up to $O\left(p^{4}, q^{4}\right)$. The computer can do it for you to arbitrary order:

```
L[qq-, q-] = (m/2!)qq^2 + (\[Kappa]/4!)qq^4 - (m\[Omega]^2/2!)q^2
    - (\[Lambda]/4!)q^4
pdef = D[L[qq, q], qq]
{sol1, sol2, sol3} = Solve[p == pdef, qq]
qq1=qq/.sol1
Assuming[{m > 0, \[Kappa] > 0}, Series[qq /. sol1, {p, 0, 9}]]
Map[Simplify, Assuming[{m > 0, \[Kappa] > 0}, Series[p qq1 - L[qq1, q], {p, 0, 9}]]]
```

3. The function $x(t)$ is a solution to the third-order, constant-coefficient differential equation $\dddot{x}-2 \ddot{x}+\dot{x}=0$.
(a) Solve it with Mathematica.

DSolve[D[x[t], \{t, 3\}] - $2 \mathrm{D}[\mathrm{x}[\mathrm{t}],\{\mathrm{t}, 2\}]+\mathrm{D}[\mathrm{x}[\mathrm{t}], \mathrm{t}]==0, \mathrm{x}[\mathrm{t}], \mathrm{t}]$
(b) Here is a solution strategy that you can carry out by hand. To start, integrate the differential equation once to arrive at

$$
\ddot{x}-2 \dot{x}+x=\text { constant } \equiv c_{0} .
$$

Then substitute $x=c_{0}+t^{a} e^{z t}$ into $\ddot{x}-2 \dot{x}+x-c_{0}=0$. Show that

$$
0=\left\{\left[(a+z t)^{2}-a\right]-2(a+z t) t+t^{2}\right\} t^{a-2} e^{z t} .
$$

(c) Consider appropriate values of a and z. Think about which values will solve the equation in part (b) and how many independent solutions you need. Write an expression for the most general $x(t)$.
(d) Prove that the difference $x^{(n+1)}(0)-x^{(n)}(0)$ is independent of n and that $e x^{(n+1)}(0)-x^{(n)}(1) \forall n$.

