Physics 652: Assignment 2

(to be submitted by Thursday, February 16, 2023)

1. Consider three potentials (Coulombic/gravitational) $V_{1}(x, y, z)=1 / \sqrt{x^{2}+y^{2}+z^{2}}$, (harmonic) $V_{2}(x, y, z)=$ $x^{2}+y^{2}+z^{2}$, and (mishegoss) $V_{3}(x, y, z)=x^{4}+2 x^{3} y^{3} / z^{2}+y^{4}+2 y^{3} z^{3} / x^{2}+z^{4}$.
(a) Show that each of V_{1}, V_{2}, and V_{3} is a homogenous function of its arguments. In each case, determine the degree of homogeneity, n.
(b) Establish that the Euler theorem

$$
x \frac{\partial V}{\partial x}+y \frac{\partial V}{\partial y}+z \frac{\partial V}{\partial z}=n V
$$

holds.
(c) Suppose that a particle of mass m with kinetic energy $K=(m / 2)\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)$ is allowed to come into thermal equilibrium at temperature T. Equipartition suggests that the average kinetic energy is $\langle K\rangle=(3 / 2) k_{B} T$. What are the average potential energies $\left\langle V_{i}\right\rangle$ for each of $i=1,2,3$.

Here's a way to automate the calculation for parts (a) and (b):

```
V1[x-, y_, z_] = 1/Sqrt[x^2 + y^2 + z^2]
n1 = Refine[Log[Refine[Simplify[Refine[
        V1[t x, t y, t z]/V1[x, y, z],
        {x \[Element] Reals, y \[Element] Reals, z \[Element] Reals}]],
            t > 0]]/Log[t], t > 0]
Simplify[
    x D[V1[x, y, z], x] + y D[V1[x, y, z], y] + z D[V1[x, y, z], z] == n1 V1[x, y, z]]
```

2. A function $F(x)$ has slope $u=d F / d x$. The purpose of the Legendre transformation is to construct a new function $G(u)=F-u x$ that is an explicit function of the slope.
(a) Explain what f is in the expression $G(u)=F\left(f^{-1}(u)\right)-u f^{-1}(u)$.
(b) Use Mathematica to make a nice plot of the function $F(x)=-x^{3}+x^{2}+2 x$ between -1 and 2 . Then use this code snippet
```
F[x-] = - x^3 + x^2 + 2 x
f = F'
Solve[f[x] == u, x]
{sol1, sol2} = Solve[f[x] == u, x]
G1[u_] = Simplify[F[x /. soll] - u (x /. sol1)]
Plot[{G1[u], G2[u]}, {u, -2, 7/3}]
```

to construct and plot functions of the form $G(u)=F(x)-u x$. Why are there two? Explain what's going on in the plot of $G(u)$ versus u and what the relation is to the plot you made of $F(x)$ versus x.
3. Consider a system in coordinates q and \dot{q}, described by a Lagrangian

$$
L(q, \dot{q})=\frac{m}{2!} \dot{q}^{2}+\frac{\kappa}{4!} \dot{q}^{4}-\frac{m \omega_{0}^{2}}{2!} q^{2}-\frac{\lambda}{4!} q^{4} .
$$

(a) Derive the dynamical equations prescribed by Euler-Lagrange. You should be able to show that

$$
\ddot{q}=-\omega_{0}^{2} q\left(\frac{1-\left(\lambda / 6 m \omega_{0}^{2}\right) q^{2}}{1+(\kappa / 2 m) \dot{q}^{2}}\right) .
$$

(b) Apply the Ansatz $q(t)=A \cos \omega_{0} t+\delta q(t)$. Derive the leading order expression for $\delta \ddot{q}$.
(c) Compute the conjugate momentum $p \equiv \partial L / \partial \dot{q}$.
(d) The corresponding Hamiltonian is

$$
H=\frac{p^{2}}{2 m}-\frac{\kappa p^{4}}{24 m^{4}}+\frac{\kappa^{2} p^{6}}{72 m^{7}}-\frac{\kappa p^{8}}{144 m^{10}}+O\left(p^{10}\right)+\frac{m \omega_{0}^{2} q^{2}}{2}+\frac{\lambda q^{4}}{24}
$$

Verify by hand the terms up to $O\left(p^{4}, q^{4}\right)$. The computer can do it for you to arbitrary order:

```
L[qq-, q-] = (m/2!)qq^2 + (\[Kappa]/4!)qq^4 - (m\[Omega]^2/2!)q^2 - (\[Lambda]/4!)q^4
pdef = D[L[qq, q], qq]
{sol1, sol2, sol3} = Solve[p == pdef, qq]
qq1=qq/.sol1
Assuming[{m > 0, \[Kappa] > 0}, Series[qq /. sol1, {p, 0, 9}]]
Map[Simplify, Assuming[{m > 0, \[Kappa] > 0}, Series[p qq1 - L[qq1, q], {p, 0, 9}]]]
```

