Physics 652: Assignment 1

(to be submitted by Tuesday, February 7, 2023)

1. Use this Mathematica command

DSolve[y'[x] == a $y[x](1-y[x] / Y), y[x], x]$
to obtain the solution to the logistic equation,

$$
\dot{y}=\frac{d y}{d t}=a y\left(1-\frac{y}{Y}\right) .
$$

Try out this next code snippet to check that the purported solution actually solves the logistic equation:

```
rhslogisticeqn = a y[x] (1 - y[x]/Y)
soln = First[DSolve[y'[x]==rhslogisticeqn, y[x], x]]
Simplify[D[y[x]/.soln,x]==rhslogisticeqn/.soln]
```

Now show explicitly (by hand) that

$$
y(t)=\frac{e^{a x+b Y} Y}{e^{a x+b Y}-1}=\frac{Y y_{0} e^{a t}}{Y+y_{0}\left(e^{a t}-1\right)}
$$

is a solution to the ODE.
2. Separate the variables of $\left(1+y^{2}\right) y d x+\left(1+x^{2}\right) x d y=0$. Find its general integral and solution $y(x)$.
3. Determine whether

$$
\left(1+x^{2}+y^{2}\right)^{-3 / 2}\left[\left(1+y^{2}\right) y d x+\left(1+x^{2}\right) x d y\right]=0
$$

is exact. Find its general integral and solution $y(x)$. Explain the connection to this Mathematica command:

```
DSolve[y'[x] == -(1+y[x\mp@subsup{]}{}{\wedge}2) y[x]/((1 + x^2) x), y[x], x]
```

4. Obtain the general solution to the differential equation $y^{\prime}+y / x=c / x$ with machine assistance. Then try to arrive at the solution by hand.
```
DSolve[y'[x] + y[x]/x == c/x, y[x], x]
```

5. Obtain the general solution to the differential equation $y^{\prime}+x y=c e^{-x^{2} / 2}$ with machine assistance. Then try to arrive at the solution by hand.
```
DSolve[y'[x] + x y[x] == c Exp[-x^2/2], y[x], x]
```

