Physics 725: Assignment 1

(to be submitted by Thursday, January 31, 2019)

1. Consider the two-dimensional crystals labelled I and II.

(II)

Answer each of the following questions for both the type-I and type-II cases.
(a) Provide a set of lattice vectors $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}\right\}$ that describes the Bravais lattice. Hint: Start from a particular atom and find the two shortest, non-collinear vectors that connect the atom to two equivalent ones in adjacent unit cells; equivalent here means the same atom in the same local environment.
(b) Introduce a dummy lattice vector $\boldsymbol{a}_{3}=\boldsymbol{e}_{z}$, directed out of the plane of the crystal, and compute the area of the unit cell $\Omega_{0}=\left(\boldsymbol{a}_{1} \times \boldsymbol{a}_{2}\right) \cdot \boldsymbol{a}_{3}$.
(c) Construct a basis $\{\boldsymbol{\tau}\}$ for the atoms in each unit cell.
(d) Determine the corresponding reciprocal lattice vectors and identify the Brillouin zone (BZ) using the Wigner-Seitz construction.
(e) Indicate which of the following is a symmetry of the crystal:

- translation by $a e_{x}$
- translation by $a e_{y}$
- inversion through a point coinciding with a filled square
- rotation by $\pi / 2$ through a point coinciding with a filled circle
- rotation by π through a point coinciding with a filled circle
- mirror reflection across a line running vertically through stars only
- mirror reflection across a line running diagonally through circles only
- translation by $a \boldsymbol{e}_{x}$ followed by a mirror reflection across a line running horizontally through squares only (an example of a glide)

2. Imagine a molecular rope made up of an alternating sequence of atoms A and B, where the $A B$ bonding length is a constant value a.
(a) Sketch this system and explain why it should be viewed as a crystal.
(b) The atomic positions are given by $R_{\mathrm{A}}=R+\tau_{\mathrm{A}}=2 n a$, and $R_{\mathrm{B}}=R+\tau_{\mathrm{B}}=(2 n+1) a$, where n is an integer. Provide definitions of the lattice vectors and basis.
(c) Give a definition for the reciprocal lattice $\{G\}$ and show that it is indeed reciprocal to the Bravais lattice $\{R\}$. The best way to do this is to prove that $\exp (i G R)=1$ for all possible choices of G and R.
(d) In the ground state, any physical properties of the system will share the periodicity of the lattice and admit an expansion

$$
f(r)=\sum_{G} f_{G} e^{i G r} .
$$

Show that $f(r+R)=f(r)$ for any R in the Bravais lattice.
(e) What condition on the coefficients f_{G} ensures that $f(r)$ is real?
(f) Consider a single electron living along the molecular rope. Argue that the most general form of its wave function is

$$
\psi(r)=\sum_{G} f_{G} e^{i[G r+\theta(r)]} .
$$

(g) Show that

$$
\frac{1}{2 a} \int_{0}^{2 a} d r|\psi(r)|^{2}=\sum_{G}\left|f_{G}\right|^{2}
$$

