Physics 726: Assignment 6

(to be submitted by Thursday, April 14, 2016)

- 1. The operator $\hat{S} = \frac{1}{2} \sum_{\alpha,\beta} c_{\alpha}^{\dagger} \sigma c_{\beta}$ measures the total intrinsic angular momentum of electrons in an orbital whose occupation is controlled by creation and annihilation operators c^{\dagger} and c.
 - (a) Show explicitly that the four states $|0\rangle = |vac\rangle$, $|\uparrow\rangle = c_{\uparrow}^{\dagger} |vac\rangle$, $|\downarrow\rangle = c_{\downarrow}^{\dagger} |vac\rangle$, and $|\uparrow\downarrow\rangle = c_{\uparrow}^{\dagger} c_{\downarrow}^{\dagger} |vac\rangle$ are eigenstates of \hat{S}^{z} .
 - (b) Prove the identity $\hat{S}^2 = \hat{S} \cdot \hat{S} = (3/4)\hat{n}(2-\hat{n})$, where $\hat{n} = \hat{n}_{\uparrow} + \hat{n}_{\downarrow} = \sum_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}$. Use this result to show that the states in part (a) are also eigenstates of \hat{S}^2 with eigenvalues 0 or 3/4. *Hint:* first prove that $\hat{n}_{\alpha}^2 = \hat{n}_{\alpha}$.
 - (c) Argue that \hat{S} behaves as a pure S = 1/2 angular momentum when $\sum_{\alpha} c_{\alpha}^{\dagger} c_{\alpha} = 1$.
- 2. The rules for the addition of angular momentum can be summarized as

$$S \otimes S' = |S - S'| \oplus \cdots \oplus (S + S' - 1) \oplus (S + S'),$$

where each spin-S block is (2S+1)-degenerate. For instance, two spin-half particles combine to give a singlet and a triplet; three combine to give two doublets and a quartet; and so on:

$$\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1$$
$$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}$$
$$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 2$$
$$\vdots$$

(a) Add the missing entries to the table below.

_	Ν	0	1/2	1	3/2	2	5/2	3	total
-	1		1						2
	2	1		1					4
	3		2		1				8
	4	2		3		1			16
	5								
	6								
	7								
	8								
	9								

(b) Consider a ferromagnetic quantum Heisenberg model with long-range interactions:

$$\hat{H} = -2|J| \sum_{i < j} \hat{S}_i \cdot \hat{S}_j$$

Suppose that the model is defined on a finite lattice with N sites. Show that the Hamiltonian can be rewritten as

$$\hat{H} = |J| \left[\frac{3N}{4} - \left(\sum_{i} \hat{S}_{i} \right)^{2} \right] = |J| \left(\frac{3N}{4} - \hat{S}_{\text{tot}}^{2} \right).$$

Determine the ground state energy eigenvalue and ground state degeneracy.

3. The quantum Heisenberg model,

$$\hat{H} = \frac{1}{2} \sum_{j,j'} J_{j,j'} \hat{S}_i \cdot \hat{S}_j = \frac{1}{2} \sum_{j,j'} J_{j,j'} \sum_a \hat{S}_j^a \hat{S}_{j'}^a,$$

describes spins on lattice sites j and j' interacting with coupling strength $J_{j,j'}$. (Assume $J_{j,j'} = J_{j',j}$ and $J_{j,j} = 0$.) The sum ranges over a = x, y, z. The spin operators obey the product and commutation relations

$$\begin{split} \hat{S}_{j}^{a} \hat{S}_{j}^{b} &= \frac{1}{4} \delta^{a,b} \hat{1} + \frac{i}{2} \sum_{c} \epsilon^{a,b,c} \hat{S}_{j}^{c} \\ [\hat{S}_{j}^{a}, \hat{S}_{j'}^{b}] &= \delta_{j,j'} i \sum_{c} \epsilon^{a,b,c} \hat{S}_{j}^{c}. \end{split}$$

(a) Ehrenfest's theorem in this context says that

$$\frac{d}{dt}\langle \hat{\boldsymbol{S}}_j \rangle = i \langle [\hat{H}, \hat{\boldsymbol{S}}_j] \rangle.$$

Evaluate this for the Heisenberg model; you should find that

$$\frac{d}{dt}\langle \hat{\mathbf{S}}_j \rangle = \sum_{j' \neq j} J_{j',j} \langle \hat{\mathbf{S}}_{j'} \times \hat{\mathbf{S}}_j \rangle.$$

Hint: Operator products distribute over the commutator according to [AB, C] = A[B, C] + [A, C]B, and $(\mathbf{u} \times \mathbf{v})^a = \sum_c \epsilon^{a,b,c} u^b v^c$ is the cross product expressed in index notation.

(b) Consider the model on a linear chain, with exchange couplings that connect only nearest-neighbour sites $(J_{j,j+n} = J\delta_{n,1})$. Derive the equation of motion

$$\frac{d}{dt}\langle \hat{\boldsymbol{S}}_j \rangle = J \langle (\hat{\boldsymbol{S}}_{j-1} + \hat{\boldsymbol{S}}_{j+1}) \times \hat{\boldsymbol{S}}_j \rangle.$$

(c) In the large-*S* limit, $\langle \hat{S}_j \rangle / S \to \Omega$ passes over to a classical unit vector, and the equation of motion obeys

$$\frac{d}{dt}\mathbf{\Omega}_j = JS(\mathbf{\Omega}_{j-1} + \mathbf{\Omega}_{j+1}) \times \mathbf{\Omega}_j.$$

Suppose that interactions favour spin alignment (J = -|J| < 0) and that the unit vector has the form $\Omega_j = \sqrt{1 - \alpha_j^2 - \beta_j^2} e_z + \alpha_j e_x + \beta_j e_y$, where α_j and β_j represents small local tilts away from the ferromagnetic ground state. Show that the linearlized equations of motion are

$$\frac{d\alpha_j}{dt} = -|J|S(\beta_{j-1} + \beta_{j+1} - 2\beta_j),$$

$$\frac{d\beta_j}{dt} = +|J|S(\alpha_{j-1} + \alpha_{j+1} - 2\alpha_j).$$

- (d) Substitute $\alpha_j(t) = \bar{\alpha} \exp[i(qaj \epsilon_q t)]$ and $\beta_j(t) = \bar{\beta} \exp[i(qaj \epsilon_q t)]$. Show that the spin wave dispersion relation is $\epsilon_q = 2|J|S(1 \cos qa)$ and that the excitations have polarization that is either right- or left-handed.
- **<u>BONUS</u>** (e) Work out the antiferromagnetic case (J > 0), where $\Omega_j = (-1)^j \sqrt{1 \alpha_j^2 \beta_j^2} \boldsymbol{e}_z + \alpha_j \boldsymbol{e}_x + \beta_j \boldsymbol{e}_y$. *Hint:* Don't forget that the antiferromagnetic state breaks translational symmetry.