Physics 726: Assignment 6

(to be submitted by Thursday, April 14, 2016)

1. The operator $\hat{\boldsymbol{S}}=\frac{1}{2} \sum_{\alpha, \beta} c_{\alpha}^{\dagger} \boldsymbol{\sigma} c_{\beta}$ measures the total intrinsic angular momentum of electrons in an orbital whose occupation is controlled by creation and annihilation operators c^{\dagger} and c.
(a) Show explicitly that the four states $|0\rangle=|\mathrm{vac}\rangle,|\uparrow\rangle=c_{\uparrow}^{\dagger}|\mathrm{vac}\rangle,|\downarrow\rangle=c_{\downarrow}^{\dagger}|\mathrm{vac}\rangle$, and $|\uparrow \downarrow\rangle=c_{\uparrow}^{\dagger} c_{\downarrow}^{\dagger}|\mathrm{vac}\rangle$ are eigenstates of \hat{S}^{z}.
(b) Prove the identity $\hat{S}^{2}=\hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{S}}=(3 / 4) \hat{n}(2-\hat{n})$, where $\hat{n}=\hat{n}_{\uparrow}+\hat{n}_{\downarrow}=\sum_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}$. Use this result to show that the states in part (a) are also eigenstates of \hat{S}^{2} with eigenvalues 0 or $3 / 4$. Hint: first prove that $\hat{n}_{\alpha}^{2}=\hat{n}_{\alpha}$.
(c) Argue that $\hat{\boldsymbol{S}}$ behaves as a pure $S=1 / 2$ angular momentum when $\sum_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}=1$.
2. The rules for the addition of angular momentum can be summarized as

$$
S \otimes S^{\prime}=\left|S-S^{\prime}\right| \oplus \cdots \oplus\left(S+S^{\prime}-1\right) \oplus\left(S+S^{\prime}\right)
$$

where each spin- S block is $(2 S+1)$-degenerate. For instance, two spin-half particles combine to give a singlet and a triplet; three combine to give two doublets and a quartet; and so on:

$$
\begin{aligned}
\frac{1}{2} \otimes \frac{1}{2} & =0 \oplus 1 \\
\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} & =\frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2} \\
\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} & =0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 2
\end{aligned}
$$

(a) Add the missing entries to the table below.

N	0		1/2	1	3/2	2	5/2	3	total
1			1						2
2	1			1					4
3			2		1				8
4	2			3		1			16
5									
6									
7									
8									
9									

(b) Consider a ferromagnetic quantum Heisenberg model with long-range interactions:

$$
\hat{H}=-2|J| \sum_{i<j} \hat{\boldsymbol{S}}_{i} \cdot \hat{\boldsymbol{S}}_{j}
$$

Suppose that the model is defined on a finite lattice with N sites. Show that the Hamiltonian can be rewritten as

$$
\hat{H}=|J|\left[\frac{3 N}{4}-\left(\sum_{i} \hat{\boldsymbol{S}}_{i}\right)^{2}\right]=|J|\left(\frac{3 N}{4}-\hat{S}_{\mathrm{tot}}^{2}\right) .
$$

Determine the ground state energy eigenvalue and ground state degeneracy.
3. The quantum Heisenberg model,

$$
\hat{H}=\frac{1}{2} \sum_{j, j^{\prime}} J_{j, j^{\prime}} \hat{\boldsymbol{S}}_{i} \cdot \hat{\boldsymbol{S}}_{j}=\frac{1}{2} \sum_{j, j^{\prime}} J_{j, j^{\prime}} \sum_{a} \hat{S}_{j}^{a} \hat{S}_{j^{\prime}}^{a},
$$

describes spins on lattice sites j and j^{\prime} interacting with coupling strength $J_{j, j^{\prime}}$. (Assume $J_{j, j^{\prime}}=J_{j^{\prime}, j}$ and $J_{j, j}=0$.) The sum ranges over $a=x, y, z$. The spin operators obey the product and commutation relations

$$
\begin{aligned}
\hat{S}_{j}^{a} \hat{S}_{j}^{b} & =\frac{1}{4} \delta^{a, b} \hat{1}+\frac{i}{2} \sum_{c} \epsilon^{a, b, c} \hat{S}_{j}^{c}, \\
{\left[\hat{S}_{j}^{a}, \hat{S}_{j^{\prime}}^{b}\right] } & =\delta_{j, j^{\prime}} i \sum_{c} \epsilon^{a, b, c} \hat{S}_{j}^{c} .
\end{aligned}
$$

(a) Ehrenfest's theorem in this context says that

$$
\frac{d}{d t}\left\langle\hat{\boldsymbol{S}}_{j}\right\rangle=i\left\langle\left[\hat{H}, \hat{\boldsymbol{S}}_{j}\right]\right\rangle
$$

Evaluate this for the Heisenberg model; you should find that

$$
\frac{d}{d t}\left\langle\hat{\boldsymbol{S}}_{j}\right\rangle=\sum_{j^{\prime} \neq j} J_{j^{\prime}, j}\left\langle\hat{\boldsymbol{S}}_{j^{\prime}} \times \hat{\boldsymbol{S}}_{j}\right\rangle .
$$

Hint: Operator products distribute over the commutator according to $[A B, C]=A[B, C]+[A, C] B$, and $(\boldsymbol{u} \times \boldsymbol{v})^{a}=\sum_{c} \epsilon^{a, b, c} u^{b} v^{c}$ is the cross product expressed in index notation.
(b) Consider the model on a linear chain, with exchange couplings that connect only nearest-neighbour sites $\left(J_{j, j+n}=J \delta_{n, 1}\right)$. Derive the equation of motion

$$
\frac{d}{d t}\left\langle\hat{\boldsymbol{S}}_{j}\right\rangle=J\left\langle\left(\hat{\boldsymbol{S}}_{j-1}+\hat{\boldsymbol{S}}_{j+1}\right) \times \hat{\boldsymbol{S}}_{j}\right\rangle .
$$

(c) In the large- S limit, $\left\langle\hat{\boldsymbol{S}}_{j}\right\rangle / S \rightarrow \boldsymbol{\Omega}$ passes over to a classical unit vector, and the equation of motion obeys

$$
\frac{d}{d t} \boldsymbol{\Omega}_{j}=J S\left(\boldsymbol{\Omega}_{j-1}+\boldsymbol{\Omega}_{j+1}\right) \times \boldsymbol{\Omega}_{j}
$$

Suppose that interactions favour spin alignment $(J=-|J|<0)$ and that the unit vector has the form $\boldsymbol{\Omega}_{j}=\sqrt{1-\alpha_{j}^{2}-\beta_{j}^{2}} \boldsymbol{e}_{z}+\alpha_{j} \boldsymbol{e}_{x}+\beta_{j} \boldsymbol{e}_{y}$, where α_{j} and β_{j} represents small local tilts away from the ferromagnetic ground state. Show that the linearlized equations of motion are

$$
\begin{aligned}
& \frac{d \alpha_{j}}{d t}=-|J| S\left(\beta_{j-1}+\beta_{j+1}-2 \beta_{j}\right) \\
& \frac{d \beta_{j}}{d t}=+|J| S\left(\alpha_{j-1}+\alpha_{j+1}-2 \alpha_{j}\right) .
\end{aligned}
$$

(d) Substitute $\alpha_{j}(t)=\bar{\alpha} \exp \left[i\left(q a j-\epsilon_{q} t\right)\right]$ and $\beta_{j}(t)=\bar{\beta} \exp \left[i\left(q a j-\epsilon_{q} t\right)\right]$. Show that the spin wave dispersion relation is $\epsilon_{q}=2|J| S(1-\cos q a)$ and that the excitations have polarization that is either right- or left-handed.
BONUS (e) Work out the antiferromagnetic case $(J>0)$, where $\boldsymbol{\Omega}_{j}=(-1)^{j} \sqrt{1-\alpha_{j}^{2}-\beta_{j}^{2}} \boldsymbol{e}_{z}+\alpha_{j} \boldsymbol{e}_{x}+\beta_{j} \boldsymbol{e}_{y}$. Hint: Don't forget that the antiferromagnetic state breaks translational symmetry.

