
Physics 726: Assignment 4
(to be submitted by Thursday, February 25, 2016)

A collection of interacting spinless fermions, confined to an infinite square well of width L, is described by
the Hamiltonian

Ĥ =

∫ L

0
dx ψ̂†(x)T (x)ψ̂(x) +

1
2

∫ L

0
dx

∫ L

0
dy ψ̂†(x)ψ̂†(y)V (x, y)ψ̂(y)ψ̂(x).

Here, T (x) = −(~2/2m)∂2/∂x2 inside the well and T = ∞ outside; V (x, y) = (κ/2)(x−y)2 represents a Hooke’s
law potential—either attractive (κ > 0) or repulsive (κ < 0)—between the particles.

From undergraduate quantum mechanics, we know that the one-body term has eigenfunctions

φn (x) =

√
2
L

sin
(nπx

L

)
that satisfy Tφn = h2n2/8mL2φn ≡ εnφn . As we showed in Assignment 3, an expansion of the field operators
in these one-body modes,

ψ̂(x) =

∞∑
n=1

φn (x)cn and ψ̂†(x) =

∞∑
n=1

φ∗n (x)c†n ,

leads to an alternative expression of the Hamiltonian

Ĥ =
∑
n

εnc†ncn +
∑

k,l,m,n

Vk,l,m,nc†
k
c†
l
cmcn ,

which is the sum of a diagonal, occupation-number term and an off-diagonal term that describes two-body
scattering events of amplitude

Vk,l,m,n =
1
2

∫ L

0
dx

∫ L

0
dy φ∗k (x)φ∗l (y)

1
2
κ(x − y)2φm (y)φn (x)

=
κ

L2

∫ L

0
dx sin

( kπx
L

)
sin

(nπx
L

) ∫ L

0
dy sin

( lπy
L

) (
x2 − 2xy + y2) sin

(mπy
L

)
.

1. Start by considering the interaction matrix elements Vk,l,m,n .

(a) Demonstrate that Vk,l,m,n = Vl,k,n,m whenever the interaction potential obeys the coordinate-exchange
symmetry V (x, y) = V (y, x).

(b) Show that the direct (k = n, l = m) contribution is

Vn,m,m,n = Vm,n,n,m =
κL2

24

[
1 −

3
π2

( 1
m2 +

1
n2

)]
.

(c) Show that the exchange (k = m, l = n) contribution is

Vm,n,m,n = Vn,m,n,m = −
32κL2

π4

m2n2

(m2 − n2)4

when m + n is odd, and Vm,n,m,n = 0 otherwise.

2. In the absence of interactions, the ground state of the N-fermions-in-a-box system is |F (N )〉 = c†N · · · c
†

2c†1 |vac〉.
The corresponding ground-state energy is

E0 =
∑
n

εn〈F (N ) |c†ncn |F
(N )〉 =

N∑
n=1

εn .

Suppose that the Hooke’s law force acting between the particles can be treated as a weak perturbation
around this non-interacting limit.



(a) Prove that the first-order energy shift is

∆E =
∑

k,l,m,n

Vk,l,m,n 〈F (N ) |c†
k
c†
l
cmcn |F

(N )〉 =
∑

1≤m<n≤N

2
(
Vm,n,n,m − Vm,n,m,n

)
.

(b) What is the estimated ground-state energy E0 + ∆E of the two-particle system?

(c) What is the estimated ground-state energy when the box contains three particles?

(d) The unperturbed energy E0 and the first-order energy shift ∆E each scale in a characteristic way
with the number of particles. For instance,

E0 =

N∑
n=1

εn =
~2N (1 + N )(1 + 2N )

48mL2 =
~2N3

24mL2 + O(N2),

so that the energy per particle
E0

N
∼
~2ρ2

24m
is a quadratic function of the particle density ρ = N/L. Perform the comparable analysis for ∆E.

(e) Give a physical picture of what it means for perturbation theory to break down at very large, negative
values of the spring constant κ. Hint: try to justify a transition comparable to Wigner crystallization.


