Physics 726: Assignment 4

(to be submitted by Thursday, February 25, 2016)
A collection of interacting spinless fermions, confined to an infinite square well of width L, is described by the Hamiltonian

$$
\hat{H}=\int_{0}^{L} d x \hat{\psi}^{\dagger}(x) T(x) \hat{\psi}(x)+\frac{1}{2} \int_{0}^{L} d x \int_{0}^{L} d y \hat{\psi}^{\dagger}(x) \hat{\psi}^{\dagger}(y) V(x, y) \hat{\psi}(y) \hat{\psi}(x) .
$$

Here, $T(x)=-\left(\hbar^{2} / 2 m\right) \partial^{2} / \partial x^{2}$ inside the well and $T=\infty$ outside; $V(x, y)=(\kappa / 2)(x-y)^{2}$ represents a Hooke's law potential-either attractive $(\kappa>0)$ or repulsive $(\kappa<0)$-between the particles.

From undergraduate quantum mechanics, we know that the one-body term has eigenfunctions

$$
\phi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)
$$

that satisfy $T \phi_{n}=h^{2} n^{2} / 8 m L^{2} \phi_{n} \equiv \varepsilon_{n} \phi_{n}$. As we showed in Assignment 3, an expansion of the field operators in these one-body modes,

$$
\hat{\psi}(x)=\sum_{n=1}^{\infty} \phi_{n}(x) c_{n} \text { and } \hat{\psi}^{\dagger}(x)=\sum_{n=1}^{\infty} \phi_{n}^{*}(x) c_{n}^{\dagger},
$$

leads to an alternative expression of the Hamiltonian

$$
\hat{H}=\sum_{n} \varepsilon_{n} c_{n}^{\dagger} c_{n}+\sum_{k, l, m, n} V_{k, l, m, n} c_{k}^{\dagger} c_{l}^{\dagger} c_{m} c_{n},
$$

which is the sum of a diagonal, occupation-number term and an off-diagonal term that describes two-body scattering events of amplitude

$$
\begin{aligned}
V_{k, l, m, n} & =\frac{1}{2} \int_{0}^{L} d x \int_{0}^{L} d y \phi_{k}^{*}(x) \phi_{l}^{*}(y) \frac{1}{2} \kappa(x-y)^{2} \phi_{m}(y) \phi_{n}(x) \\
& =\frac{\kappa}{L^{2}} \int_{0}^{L} d x \sin \left(\frac{k \pi x}{L}\right) \sin \left(\frac{n \pi x}{L}\right) \int_{0}^{L} d y \sin \left(\frac{l \pi y}{L}\right)\left(x^{2}-2 x y+y^{2}\right) \sin \left(\frac{m \pi y}{L}\right) .
\end{aligned}
$$

1. Start by considering the interaction matrix elements $V_{k, l, m, n}$.
(a) Demonstrate that $V_{k, l, m, n}=V_{l, k, n, m}$ whenever the interaction potential obeys the coordinate-exchange symmetry $V(x, y)=V(y, x)$.
(b) Show that the $\operatorname{direct}(k=n, l=m)$ contribution is

$$
V_{n, m, m, n}=V_{m, n, n, m}=\frac{\kappa L^{2}}{24}\left[1-\frac{3}{\pi^{2}}\left(\frac{1}{m^{2}}+\frac{1}{n^{2}}\right)\right] .
$$

(c) Show that the exchange ($k=m, l=n$) contribution is

$$
V_{m, n, m, n}=V_{n, m, n, m}=-\frac{32 \kappa L^{2}}{\pi^{4}} \frac{m^{2} n^{2}}{\left(m^{2}-n^{2}\right)^{4}}
$$

when $m+n$ is odd, and $V_{m, n, m, n}=0$ otherwise.
2. In the absence of interactions, the ground state of the N-fermions-in-a-box system is $\left|F^{(N)}\right\rangle=c_{N}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle$. The corresponding ground-state energy is

$$
E_{0}=\sum_{n} \varepsilon_{n}\left\langle F^{(N)}\right| c_{n}^{\dagger} c_{n}\left|F^{(N)}\right\rangle=\sum_{n=1}^{N} \varepsilon_{n} .
$$

Suppose that the Hooke's law force acting between the particles can be treated as a weak perturbation around this non-interacting limit.
(a) Prove that the first-order energy shift is

$$
\Delta E=\sum_{k, l, m, n} V_{k, l, m, n}\left\langle F^{(N)}\right| c_{k}^{\dagger} c_{l}^{\dagger} c_{m} c_{n}\left|F^{(N)}\right\rangle=\sum_{1 \leq m<n \leq N} 2\left(V_{m, n, n, m}-V_{m, n, m, n}\right) .
$$

(b) What is the estimated ground-state energy $E_{0}+\Delta E$ of the two-particle system?
(c) What is the estimated ground-state energy when the box contains three particles?
(d) The unperturbed energy E_{0} and the first-order energy shift ΔE each scale in a characteristic way with the number of particles. For instance,

$$
E_{0}=\sum_{n=1}^{N} \varepsilon_{n}=\frac{\hbar^{2} N(1+N)(1+2 N)}{48 m L^{2}}=\frac{\hbar^{2} N^{3}}{24 m L^{2}}+O\left(N^{2}\right)
$$

so that the energy per particle

$$
\frac{E_{0}}{N} \sim \frac{\hbar^{2} \rho^{2}}{24 m}
$$

is a quadratic function of the particle density $\rho=N / L$. Perform the comparable analysis for ΔE.
(e) Give a physical picture of what it means for perturbation theory to break down at very large, negative values of the spring constant κ. Hint: try to justify a transition comparable to Wigner crystallization.

