Physics 726: Assignment 3
(to be submitted by Thursday, February 18, 2016)

. A system of spinless fermions is described by the Hamiltonian

(o)
§ mm’

m=1

where the energy levels €] < &, < €3 < .- are strictly ordered. The N-fermion ground state is a Fermi
Sea with all energy levels filled up to e

IFMy = ¢l - clefIvac).

(a) Show explicitly that | F\)) is an eigenstate of the total number operator N = Yot c;(n Cpn
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(b) Confirm that ¢, |F By = - ;( ;r ;r }leac) and explain why we should view this as the lowest-lying

excited state of the four-fermion system.
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|F®)Y is the ground state of the five-particle system, because its energy €1 + &, + €3 + &4 + &5 is
the lowest of any state with five fermions. Similarly, |F By =g] + & + &3+ &4 is the ground state
of the four-particle system. c4|F )y is also a state with four fermions, but it differs from |F™) in
that orbital 4 is empty and orbital 5 is occupied instead. We can view this as the fermion in orbital
4 having been promoted upward to the next available orbital.

(c) Prove that (FN)|F(N)y = § N.N’> Which is to say that the state |F ()Y is (i) properly normalized and
(ii) orthogonal to any Fermi Sea with a different number of particles.



If N = N’, we can proceed by induction. Observe that (F(©|F©) = (vac|vac) = 1 and that
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On the other hand, if N > N’ then
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The case of N < N’ follows in the same way, since (F(MIF(N'))* = (FIND|F(N)y = .
(d) Following the logic of question 1(c), demonstrate that

(FMe,|IFNYy ~ §np1 v O(N 2 0)O(N” 2 1)
and (FM|clefe)|FNY) ~ 6y a1 O(N = 2) 0N > 1),

The expressions above rely on a modified Heaviside notation in which 6(true) = 1 and 6(false) = 0.
Solongas 1 < i < N and N' > 0, cl.IF(N,)) is an (N’ — 1)-particle state. So the overlap
(F(N)lcl.lF(N')> is only nonzero if N =1 > 0 and N > 0 are equal—hence the .+ n’ and
the 6 factors that follow it.
Solongasl <i<N'andl <j<k<Norl <k <j< N, the states cllF(N')) and ckciIF(N))
describe collections of N’ — 1 > 0 and N — 2 > 0 particles.

(e) Convince yourself that the first expectation value in question 1(d) vanishes unless i = N + 1. List all
the possible values of j, k, and / such that the second expectation value is guaranteed to be nonzero.

Consider ¢,|FN). If i = N’, the resulting state is exactly |[F"~D), up to a phase. Otherwise, it
is an excited (N’ — 1)-particle state that is not a Fermi Sea ground state. The only nonvanishing
contribution from (F(N)IcilF(N')) arises wheni = N’ = N + 1.

For the second expression, weneed N = N'+1> 0,1 <i < N’,andeither j = N,k =iorj =1,
k=N.

(f) Show that (F(l)lcjcj|F(1)> = 6;16;, and (F(z)lcjcj|F(2)) = 6;16;1 + 0;20;2 and that, more
generally,
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The one-particle Fermi sea:
(F(l)lc;cle(l)> = (vaclclc;cjclTlva@
= (vac|(6;,1 — cchl)((SJ-,l - cch)Ivac>
=0i,10/,1



The two-particle Fermi sea:
(F(Z)lc:cleQ)) = <vac|c1czcjcjc;cl+|vac>
= (vac|c, (6;2 — cjcz) (62— ‘;‘ij)cﬁva@
= (vac|c, (6;2 — cjcz) (62— cgcj)cflvac)
= (vac|c, (6,20, — (51',26-2;-61- - (51"26;.;-62 + c;'czc;cj)cflva@
= 5,~,2(5A,-,2<vac|c1c>lr|vac) - 6i,2<vac|c1c§cjcflvac>
- 6j,2(vac|clcjc2c1|vac> + (vaclclcjczc;cjcflva@
= 6:.20.2 — 6i2(vac| (—cfe;) (6.1 — cfe;) |vac)
—6;j2(vac|(d;,1 — cj.icl)(—cfcz) [vac)
+ (vac|(5;1 — cz'cl)(l - c;cz) (61— c';'cj)lvac>
= 04,1051 +0;20;2

The N-particle Fermi sea, solved by recursion:
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(g) Compute the expectation value of an arbitrary biquadratic operator string. You should find that

(F(N)Ic;(c;ckcllF(N)) = (61,10, — 0i,k0j,0) (1 = 65,5) (1 = 0, 1) i ){A).
(h) The ground state of the three-fermion system is |F By = c;r c;ciflvac). Show that it has energy

Z am(F(3)|cjncm|F(3)) =g +&) +&3.
m

Hint: have a look at what you proved in question 1(f).

(i) Recall that in single-particle quantum mechanics, the wave function W(x) = (x|¥) is just the po-
sition representation of the state |'¥'). With this in mind, compute the real-space, many-body wave
function corresponding to the state |F®). First, build a state with three fermions in definite posi-
tions, |x1,x2,x3) = 1/A/T(x3):f/T (xz):,ﬁJr (x1)|vac). Then take its overlap with the ket of interest:

P (x1,x2,x3) = (xp,x2,x3| FP) = (vaclff (x) ) (x2)d (x3)c) )] |vac).



Hint: use the field operator expansion and remember what you did in question 1(g).

W (xy,x2,x3) = (vacld (x)f (x2)f (x3)cl el el vac)

= (vac| (12‘ b (m)q)(é . <x2>cm)(2 Bu(x3)ca |elele]vac)
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= ¢1(x1)h2(x2)P3(x3) — P2(x1)P1(x2)P3(x3) + P2(x1)P3(x2)P1(x3)
— ¢1(x1)P3(x2)h2(x3) + 3(x1)P1(x2)P2(x3) — P3(x1)P2(x2)P1(x3)

2. Consider a collection of interacting fermions (again, spinless for simplicity). In second quantized form,
the Hamiltonian is

N n n 1 n ~ ~ R
A= f dXW(x)T(X);b(xHE f dx f dy " OFT (M (x, 0) () (x).

Suppose that the one-body term has eigenfunctions ¢,,(x) that satisty T¢,, = &,,¢,,. Proceed by ex-
pressing the field operators as an expansion in these one-body modes:

G(x) =) gm(x)em and §1(x) = Y @5, (0.
m=1 m=1

(a) Show that the Hamiltonian can be written as

g = i Tt
H = Zsmcmcm + Z Vj,k,l,ijCkClCm,
m J-k.Lm

in terms of a two-body matrix element
l * *
Viddom = 5 | dx | dy ¢5(x)¢ ()V (%, 7)1 (y) ¢ (x).

Substitute for zf/ Make use of the fact that f ¢, Thm = EmOm,n and the definition of V; x 1 .

(b) If the interactions are sufficiently weak, we may be able to treat their effect as a perturbation on the
noninteracting system, which has a ground state |FN)). Show that the first-order energy shift is

AE= 3" Vit FNlelcle,qlFMy = 3 2(Vij g = Vijig)-
i,j.k,1 1<i<j<N



From the result in 1(g),
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(c) Suppose that the fermions interact via a repulsive contact potential V (x,y) = Uaogd(x —y), where U
and ag are positive constants with units of energy and length. Compute the first-order energy shift
for this case. Explain why the answer you get is a direct consequence of the fermions being spinless.

In that case, V; j j; = Vi j.i,j» and thus AE = 0.



