Physics 726: Assignment 3

(to be submitted by Thursday, February 18, 2016)

1. A system of spinless fermions is described by the Hamiltonian

$$
\hat{H}=\sum_{m=1}^{\infty} \varepsilon_{m} c_{m}^{\dagger} c_{m}
$$

where the energy levels $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}<\cdots$ are strictly ordered. The N-fermion ground state is a Fermi Sea with all energy levels filled up to ε_{N} :

$$
\left|F^{(N)}\right\rangle=c_{N}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle .
$$

(a) Show explicitly that $\left|F^{(N)}\right\rangle$ is an eigenstate of the total number operator $\hat{N}=\sum_{m=1}^{\infty} c_{m}^{\dagger} c_{m}$.

$$
\begin{aligned}
\hat{N}\left|F^{(N)}\right\rangle & =\hat{N} c_{N}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
& =\sum_{m=1}^{\infty} c_{m}^{\dagger} c_{m} c_{N}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
& =\sum_{m=1}^{N} c_{N}^{\dagger} \cdots c_{m+1}^{\dagger} \underbrace{c_{m}^{\dagger} c_{m} c_{m}^{\dagger}}_{c_{m}^{\dagger}\left(1-c_{m}^{\dagger} c_{m}\right)} c_{m-1}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle+\sum_{m=N+1}^{\infty} c_{N}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger} c_{m}^{\dagger} \underbrace{c_{m}|\mathrm{vac}\rangle}_{0} \\
& =\sum_{m=1}^{N} c_{N}^{\dagger} \cdots c_{m+1}^{\dagger} c_{m}^{\dagger} c_{m-1}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle=N\left|F^{(N)}\right\rangle
\end{aligned}
$$

(b) Confirm that $c_{4}\left|F^{(5)}\right\rangle=-c_{5}^{\dagger} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle$, and explain why we should view this as the lowest-lying excited state of the four-fermion system.

$$
\begin{aligned}
c_{4}\left|F^{(5)}\right\rangle & =c_{4} c_{5}^{\dagger} c_{4}^{\dagger} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
& =-c_{5}^{\dagger} \underbrace{c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle}_{1-c_{4}^{\dagger} c_{4} c_{4}^{\dagger}} \\
& =-c_{5}^{\dagger} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle+c_{5}^{\dagger} c_{4}^{\dagger} c_{4} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
& =-c_{5}^{\dagger} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle+(-1)^{3} c_{5}^{\dagger} c_{4}^{\dagger} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger} \underbrace{c_{4}|\mathrm{vac}\rangle}_{0}
\end{aligned}
$$

$\left|F^{(5)}\right\rangle$ is the ground state of the five-particle system, because its energy $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}$ is the lowest of any state with five fermions. Similarly, $\left|F^{(4)}\right\rangle=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}$ is the ground state of the four-particle system. $c_{4}\left|F^{(5)}\right\rangle$ is also a state with four fermions, but it differs from $\left|F^{(4)}\right\rangle$ in that orbital 4 is empty and orbital 5 is occupied instead. We can view this as the fermion in orbital 4 having been promoted upward to the next available orbital.
(c) Prove that $\left\langle F^{(N)} \mid F^{\left(N^{\prime}\right)}\right\rangle=\delta_{N, N^{\prime}}$, which is to say that the state $\left|F^{(N)}\right\rangle$ is (i) properly normalized and (ii) orthogonal to any Fermi Sea with a different number of particles.

If $N=N^{\prime}$, we can proceed by induction. Observe that $\left\langle F^{(0)} \mid F^{(0)}\right\rangle=\langle\operatorname{vac} \mid \mathrm{vac}\rangle=1$ and that

$$
\begin{aligned}
\left\langle F^{(N)} \mid F^{(N)}\right\rangle= & \langle\operatorname{vac}| c_{1} c_{2} \cdots c_{N-1} \underbrace{c_{N} c_{N}^{\dagger}}_{1-c_{N}^{\dagger} c_{N}} c_{N-1}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \langle\operatorname{vac}| c_{1} c_{2} \cdots c_{N-2} \underbrace{c_{N-1} c_{N-1}^{\dagger}}_{1-c_{N-1}^{\dagger} c_{N-1}} c_{N-2}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
& -(-1)^{N-1}\langle\operatorname{vac}| c_{1} c_{2} \cdots c_{N-1} c_{N}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger} \underbrace{c_{N}|\mathrm{vac}\rangle}_{0} \\
= & \left\langle F^{(N-1)} \mid F^{(N-1)}\right\rangle=1
\end{aligned}
$$

On the other hand, if $N>N^{\prime}$ then

$$
\begin{aligned}
\left\langle F^{(N)} \mid F^{\left(N^{\prime}\right)}\right\rangle & =\langle\operatorname{vac}| c_{1} c_{2} \cdots c_{N} c_{N^{\prime}}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
& =(-1)^{N^{\prime}}\langle\operatorname{vac}| c_{1} c_{2} \cdots c_{N-1} c_{N^{\prime}}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger} \underbrace{c_{N}|\operatorname{vac}\rangle}_{0}=0
\end{aligned}
$$

The case of $N<N^{\prime}$ follows in the same way, since $\left\langle F^{(N)} \mid F^{\left(N^{\prime}\right)}\right\rangle^{*}=\left\langle F^{\left(N^{\prime}\right)} \mid F^{(N)}\right\rangle=0$.
(d) Following the logic of question 1(c), demonstrate that

$$
\begin{aligned}
\left\langle F^{(N)}\right| c_{i}\left|F^{\left(N^{\prime}\right)}\right\rangle & \sim \delta_{N+1, N^{\prime}} \theta(N \geq 0) \theta\left(N^{\prime} \geq 1\right) \\
\text { and }\left\langle F^{(N)}\right| c_{j}^{\dagger} c_{k}^{\dagger} c_{l}\left|F^{\left(N^{\prime}\right)}\right\rangle & \sim \delta_{N, N^{\prime}+1} \theta(N \geq 2) \theta\left(N^{\prime} \geq 1\right)
\end{aligned}
$$

The expressions above rely on a modified Heaviside notation in which θ (true) $=1$ and θ (false) $=0$. So long as $1 \leq i \leq N^{\prime}$ and $N^{\prime}>0, c_{i}\left|F^{\left(N^{\prime}\right)}\right\rangle$ is an $\left(N^{\prime}-1\right)$-particle state. So the overlap $\left\langle F^{(N)}\right| c_{i}\left|F^{\left(N^{\prime}\right)}\right\rangle$ is only nonzero if $N^{\prime}-1 \geq 0$ and $N \geq 0$ are equal-hence the $\delta_{N+1, N^{\prime}}$ and the θ factors that follow it.
So long as $1 \leq i \leq N^{\prime}$ and $1 \leq j<k \leq N$ or $1 \leq k<j \leq N$, the states $c_{l}\left|F^{\left(N^{\prime}\right)}\right\rangle$ and $c_{k} c_{j}\left|F^{(N)}\right\rangle$ describe collections of $N^{\prime}-1 \geq 0$ and $N-2 \geq 0$ particles.
(e) Convince yourself that the first expectation value in question 1(d) vanishes unless $i=N+1$. List all the possible values of j, k, and l such that the second expectation value is guaranteed to be nonzero. Consider $c_{i}\left|F^{\left(N^{\prime}\right)}\right\rangle$. If $i=N^{\prime}$, the resulting state is exactly $\left|F^{\left(N^{\prime}-1\right)}\right\rangle$, up to a phase. Otherwise, it is an excited $\left(N^{\prime}-1\right)$-particle state that is not a Fermi Sea ground state. The only nonvanishing contribution from $\left\langle F^{(N)}\right| c_{i}\left|F^{\left(N^{\prime}\right)}\right\rangle$ arises when $i=N^{\prime}=N+1$.
For the second expression, we need $N=N^{\prime}+1>0,1 \leq i \leq N^{\prime}$, and either $j=N, k=i$ or $j=i$, $k=N$.
(f) Show that $\left\langle F^{(1)}\right| c_{i}^{\dagger} c_{j}\left|F^{(1)}\right\rangle=\delta_{i, 1} \delta_{j, 1}$ and $\left\langle F^{(2)}\right| c_{i}^{\dagger} c_{j}\left|F^{(2)}\right\rangle=\delta_{i, 1} \delta_{j, 1}+\delta_{i, 2} \delta_{j, 2}$ and that, more generally,

$$
\left\langle F^{(N)}\right| c_{i}^{\dagger} c_{j}\left|F^{(N)}\right\rangle=\sum_{m=1}^{N} \delta_{i, m} \delta_{j, m}=\delta_{i, j} \theta(1 \leq i \leq N)=\delta_{i, j}\left\langle F^{(N)}\right| \hat{n}_{i}\left|F^{(N)}\right\rangle \equiv \delta_{i, j}\left\langle\hat{n}_{i}\right\rangle
$$

The one-particle Fermi sea:

$$
\begin{aligned}
\left\langle F^{(1)}\right| c_{i}^{\dagger} c_{j}\left|F^{(1)}\right\rangle & =\langle\operatorname{vac}| c_{1} c_{i}^{\dagger} c_{j} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
& =\langle\operatorname{vac}|\left(\delta_{i, 1}-c_{i}^{\dagger} c_{1}\right)\left(\delta_{j, 1}-c_{1}^{\dagger} c_{j}\right)|\mathrm{vac}\rangle \\
& =\delta_{i, 1} \delta_{j, 1}
\end{aligned}
$$

The two-particle Fermi sea:

$$
\begin{aligned}
\left\langle F^{(2)}\right| c_{i}^{\dagger} c_{j}\left|F^{(2)}\right\rangle= & \langle\operatorname{vac}| c_{1} c_{2} c_{i}^{\dagger} c_{j} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \langle\operatorname{vac}| c_{1}\left(\delta_{i, 2}-c_{i}^{\dagger} c_{2}\right)\left(\delta_{j, 2}-c_{2}^{\dagger} c_{j}\right) c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \langle\operatorname{vac}| c_{1}\left(\delta_{i, 2}-c_{i}^{\dagger} c_{2}\right)\left(\delta_{j, 2}-c_{2}^{\dagger} c_{j}\right) c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \langle\operatorname{vac}| c_{1}\left(\delta_{i, 2} \delta_{j, 2}-\delta_{i, 2} c_{2}^{\dagger} c_{j}-\delta_{j, 2} c_{i}^{\dagger} c_{2}+c_{i}^{\dagger} c_{2} c_{2}^{\dagger} c_{j}\right) c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \delta_{i, 2} \delta_{j, 2}\langle\operatorname{vac}| c_{1} c_{1}^{\dagger}|\mathrm{vac}\rangle-\delta_{i, 2}\langle\mathrm{vac}| c_{1} c_{2}^{\dagger} c_{j} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
& \quad-\delta_{j, 2}\langle\operatorname{vac}| c_{1} c_{i}^{\dagger} c_{2} c_{1}^{\dagger}|\mathrm{vac}\rangle+\langle\operatorname{vac}| c_{1} c_{i}^{\dagger} c_{2} c_{2}^{\dagger} c_{j} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \delta_{i, 2} \delta_{j, 2}-\delta_{i, 2}\langle\operatorname{vac}|\left(-c_{2}^{\dagger} c_{1}\right)\left(\delta_{j, 1}-c_{1}^{\dagger} c_{j}\right)|\mathrm{vac}\rangle \\
& \quad-\delta_{j, 2}\langle\operatorname{vac}|\left(\delta_{i, 1}-c_{i}^{\dagger} c_{1}\right)\left(-c_{1}^{\dagger} c_{2}\right)|\mathrm{vac}\rangle \\
& \quad+\langle\operatorname{vac}|\left(\delta_{i, 1}-c_{i}^{\dagger} c_{1}\right)\left(1-c_{2}^{\dagger} c_{2}\right)\left(\delta_{j, 1}-c_{1}^{\dagger} c_{j}\right)|\mathrm{vac}\rangle \\
= & \delta_{i, 1} \delta_{j, 1}+\delta_{i, 2} \delta_{j, 2}
\end{aligned}
$$

The N-particle Fermi sea, solved by recursion:

$$
\begin{aligned}
\left\langle F^{(N)}\right| c_{i}^{\dagger} c_{j}\left|F^{(N)}\right\rangle= & \langle\operatorname{vac}| c_{1} c_{2} \cdots c_{N-1} c_{N} c_{i}^{\dagger} c_{j} c_{N}^{\dagger} c_{N-1}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \langle\operatorname{vac}| c_{1} c_{2} \cdots c_{N-1}\left(\delta_{i, N}-c_{i}^{\dagger} c_{N}\right)\left(\delta_{j, N}-c_{N}^{\dagger} c_{j}\right) c_{N-1}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \delta_{i, N} \delta_{j, N} \underbrace{\left\langle F^{(N-1)} \mid F^{(N-1)}\right\rangle}_{1}-\delta_{i, N}\langle\underbrace{\left\langle F^{(N-1)}\right| c_{N}^{\dagger} c_{j}\left|F^{(N-1)}\right\rangle}_{0} \\
& \quad-\delta_{j, N} \underbrace{\left\langle F^{(N-1)}\right| c_{i}^{\dagger} c_{N}\left|F^{(N-1)}\right\rangle}_{0}+\left\langle F^{(N-1)}\right| c_{i}^{\dagger} c_{N} c_{N}^{\dagger} c_{j}\left|F^{(N-1)}\right\rangle \\
= & \delta_{i, N} \delta_{j, N}+\left\langle F^{(N-1)}\right| c_{i}^{\dagger}(1-\underbrace{c_{N}^{\dagger} c_{N}}_{0}) c_{j}\left|F^{(N-1)}\right\rangle \\
= & \delta_{i, N} \delta_{j, N}+\sum_{n=1}^{N-1} \delta_{i, n} \delta_{j, n} \\
= & \sum_{n=1}^{N} \delta_{i, n} \delta_{j, n}
\end{aligned}
$$

(g) Compute the expectation value of an arbitrary biquadratic operator string. You should find that

$$
\left\langle F^{(N)}\right| c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}\left|F^{(N)}\right\rangle=\left(\delta_{i, l} \delta_{j, k}-\delta_{i, k} \delta_{j, l}\right)\left(1-\delta_{i, j}\right)\left(1-\delta_{k, l}\right)\left\langle\hat{n}_{i}\right\rangle\left\langle\hat{n}_{j}\right\rangle
$$

(h) The ground state of the three-fermion system is $\left|F^{(3)}\right\rangle=c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle$. Show that it has energy

$$
\sum_{m} \varepsilon_{m}\left\langle F^{(3)}\right| c_{m}^{\dagger} c_{m}\left|F^{(3)}\right\rangle=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}
$$

Hint: have a look at what you proved in question 1(f).
(i) Recall that in single-particle quantum mechanics, the wave function $\Psi(x)=\langle x \mid \Psi\rangle$ is just the position representation of the state $|\Psi\rangle$. With this in mind, compute the real-space, many-body wave function corresponding to the state $\left|F^{(3)}\right\rangle$. First, build a state with three fermions in definite positions, $\left|x_{1}, x_{2}, x_{3}\right\rangle=\hat{\psi}^{\dagger}\left(x_{3}\right) \hat{\psi}^{\dagger}\left(x_{2}\right) \hat{\psi}^{\dagger}\left(x_{1}\right)|v a c\rangle$. Then take its overlap with the ket of interest:

$$
\Psi\left(x_{1}, x_{2}, x_{3}\right)=\left\langle x_{1}, x_{2}, x_{3} \mid F^{(3)}\right\rangle=\langle\operatorname{vac}| \hat{\psi}\left(x_{1}\right) \hat{\psi}\left(x_{2}\right) \hat{\psi}\left(x_{3}\right) c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle
$$

Hint: use the field operator expansion and remember what you did in question $1(\mathrm{~g})$.

$$
\begin{aligned}
\Psi\left(x_{1}, x_{2}, x_{3}\right)= & \langle\operatorname{vac}| \hat{\psi}\left(x_{1}\right) \hat{\psi}\left(x_{2}\right) \hat{\psi}\left(x_{3}\right) c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \langle\operatorname{vac}|\left(\sum_{l=1}^{\infty} \phi_{l}\left(x_{1}\right) c_{l}\right)\left(\sum_{m=1}^{\infty} \phi_{m}\left(x_{2}\right) c_{m}\right)\left(\sum_{n=1}^{\infty} \phi_{n}\left(x_{3}\right) c_{n}\right) c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \sum_{l, m, n} \phi_{l}\left(x_{1}\right) \phi_{m}\left(x_{2}\right) \phi_{n}\left(x_{3}\right)\langle\mathrm{vac}| c_{l} c_{m} c_{n} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle \\
= & \sum_{l, m, n} \phi_{l}\left(x_{1}\right) \phi_{m}\left(x_{2}\right) \phi_{n}\left(x_{3}\right) \sum_{P}(-1)^{P} \delta_{P 1, l} \delta_{P 2, m} \delta_{P 3, n} \\
= & \sum_{P}(-1)^{P} \phi_{P 1}\left(x_{1}\right) \phi_{P 2}\left(x_{2}\right) \phi_{P 3}\left(x_{3}\right) \\
= & \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right)-\phi_{2}\left(x_{1}\right) \phi_{1}\left(x_{2}\right) \phi_{3}\left(x_{3}\right)+\phi_{2}\left(x_{1}\right) \phi_{3}\left(x_{2}\right) \phi_{1}\left(x_{3}\right) \\
& \quad-\phi_{1}\left(x_{1}\right) \phi_{3}\left(x_{2}\right) \phi_{2}\left(x_{3}\right)+\phi_{3}\left(x_{1}\right) \phi_{1}\left(x_{2}\right) \phi_{2}\left(x_{3}\right)-\phi_{3}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{1}\left(x_{3}\right)
\end{aligned}
$$

2. Consider a collection of interacting fermions (again, spinless for simplicity). In second quantized form, the Hamiltonian is

$$
\hat{H}=\int d x \hat{\psi}^{\dagger}(x) T(x) \hat{\psi}(x)+\frac{1}{2} \int d x \int d y \hat{\psi}^{\dagger}(x) \hat{\psi}^{\dagger}(y) V(x, y) \hat{\psi}(y) \hat{\psi}(x) .
$$

Suppose that the one-body term has eigenfunctions $\phi_{m}(x)$ that satisfy $T \phi_{m}=\varepsilon_{m} \phi_{m}$. Proceed by expressing the field operators as an expansion in these one-body modes:

$$
\hat{\psi}(x)=\sum_{m=1}^{\infty} \phi_{m}(x) c_{m} \text { and } \hat{\psi}^{\dagger}(x)=\sum_{m=1}^{\infty} \phi_{m}^{*}(x) c_{m}^{\dagger} \text {. }
$$

(a) Show that the Hamiltonian can be written as

$$
\hat{H}=\sum_{m} \varepsilon_{m} c_{m}^{\dagger} c_{m}+\sum_{j, k, l, m} V_{j, k, l, m} c_{j}^{\dagger} c_{k}^{\dagger} c_{l} c_{m},
$$

in terms of a two-body matrix element

$$
V_{j, k, l, m}=\frac{1}{2} \int d x \int d y \phi_{j}^{*}(x) \phi_{k}^{*}(y) V(x, y) \phi_{l}(y) \phi_{m}(x) .
$$

Substitute for $\hat{\psi}$. Make use of the fact that $\int \phi_{n}^{*} T \phi_{m}=\varepsilon_{m} \delta_{m, n}$ and the definition of $V_{j, k, l, m}$.
(b) If the interactions are sufficiently weak, we may be able to treat their effect as a perturbation on the noninteracting system, which has a ground state $\left|F^{(N)}\right\rangle$. Show that the first-order energy shift is

$$
\Delta E=\sum_{i, j, k, l} V_{i, j, k, l}\left\langle F^{(N)}\right| c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}\left|F^{(N)}\right\rangle=\sum_{1 \leq i<j \leq N} 2\left(V_{i, j, j, i}-V_{i, j, i, j}\right) .
$$

From the result in $1(\mathrm{~g})$,

$$
\begin{aligned}
\Delta E & =\sum_{i, j, k, l} V_{i, j, k, l}\left\langle F^{(N)}\right| c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}\left|F^{(N)}\right\rangle \\
& =\sum_{i, j, k, l} V_{i, j, k, l}\left(\delta_{i, l} \delta_{j, k}-\delta_{i, k} \delta_{j, l}\right)\left(1-\delta_{i, j}\right)\left(1-\delta_{k, l}\right)\left\langle\hat{n}_{i}\right\rangle\left\langle\hat{n}_{j}\right\rangle \\
& =\sum_{i \neq j}\left(V_{i, j, j, i}-V_{i, j, i, j}\right)\left\langle\hat{n}_{i}\right\rangle\left\langle\hat{n}_{j}\right\rangle \\
& =\sum_{i \neq j}\left(V_{i, j, j, i}-V_{i, j, i, j}\right) \theta(i \leq N) \theta(j \leq N) \\
& =\sum_{1 \leq i<j \leq N} 2\left(V_{i, j, j, i}-V_{i, j, i, j}\right)
\end{aligned}
$$

(c) Suppose that the fermions interact via a repulsive contact potential $V(x, y)=U a_{0} \delta(x-y)$, where U and a_{0} are positive constants with units of energy and length. Compute the first-order energy shift for this case. Explain why the answer you get is a direct consequence of the fermions being spinless. In that case, $V_{i, j, j, i}=V_{i, j, i, j}$, and thus $\Delta E=0$.

