Physics 726: Assignment 3

(to be submitted by Thursday, February 18, 2016)

1. A system of spinless fermions is described by the Hamiltonian

$$
\hat{H}=\sum_{m=1}^{\infty} \varepsilon_{m} c_{m}^{\dagger} c_{m}
$$

where the energy levels $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}<\cdots$ are strictly ordered. The N-fermion ground state is a Fermi Sea with all energy levels filled up to ε_{N} :

$$
\left|F^{(N)}\right\rangle=c_{N}^{\dagger} \cdots c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle
$$

(a) Show explicitly that $\left|F^{(N)}\right\rangle$ is an eigenstate of the total number operator $\hat{N}=\sum_{m=1}^{\infty} c_{m}^{\dagger} c_{m}$.
(b) Confirm that $c_{4}\left|F^{(5)}\right\rangle=-c_{5}^{\dagger} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|v a c\rangle$, and explain why we should view this as the lowest-lying excited state of the four-fermion system.
(c) Prove that $\left\langle F^{(N)} \mid F^{\left(N^{\prime}\right)}\right\rangle=\delta_{N, N^{\prime}}$, which is to say that the state $\left|F^{(N)}\right\rangle$ is (i) properly normalized and (ii) orthogonal to any Fermi Sea with a different number of particles.
(d) Following the logic of question 1(c), demonstrate that

$$
\begin{aligned}
\left\langle F^{(N)}\right| c_{i}\left|F^{\left(N^{\prime}\right)}\right\rangle & \sim \delta_{N+1, N^{\prime}} \theta(N \geq 0) \theta\left(N^{\prime} \geq 1\right) \\
\text { and }\left\langle F^{(N)}\right| c_{j}^{\dagger} c_{k}^{\dagger} c_{l}\left|F^{\left(N^{\prime}\right)}\right\rangle & \sim \delta_{N, N^{\prime}+1} \theta(N \geq 2) \theta\left(N^{\prime} \geq 1\right)
\end{aligned}
$$

The expressions above rely on a modified Heaviside notation in which θ (true) $=1$ and θ (false) $=0$.
(e) Convince yourself that the first expectation value in question 1(d) vanishes unless $i=N+1$. List all the possible values of j, k, and l such that the second expectation value is guaranteed to be nonzero.
(f) Show that $\left\langle F^{(1)}\right| c_{i}^{\dagger} c_{j}\left|F^{(1)}\right\rangle=\delta_{i, 1} \delta_{j, 1}$ and $\left\langle F^{(2)}\right| c_{i}^{\dagger} c_{j}\left|F^{(2)}\right\rangle=\delta_{i, 1} \delta_{j, 1}+\delta_{i, 2} \delta_{j, 2}$ and that, more generally,

$$
\left\langle F^{(N)}\right| c_{i}^{\dagger} c_{j}\left|F^{(N)}\right\rangle=\sum_{m=1}^{N} \delta_{i, m} \delta_{j, m}=\delta_{i, j} \theta(1 \leq i \leq N)=\delta_{i, j}\left\langle F^{(N)}\right| \hat{n}_{i}\left|F^{(N)}\right\rangle \equiv \delta_{i, j}\left\langle\hat{n}_{i}\right\rangle
$$

(g) Compute the expectation value of an arbitrary biquadratic operator string. You should find that

$$
\left\langle F^{(N)}\right| c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}\left|F^{(N)}\right\rangle=\left(\delta_{i, l} \delta_{j, k}-\delta_{i, k} \delta_{j, l}\right)\left(1-\delta_{i, j}\right)\left(1-\delta_{k, l}\right)\left\langle\hat{n}_{i}\right\rangle\left\langle\hat{n}_{j}\right\rangle
$$

(h) The ground state of the three-fermion system is $\left|F^{(3)}\right\rangle=c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|v a c\rangle$. Show that it has energy

$$
\sum_{m} \varepsilon_{m}\left\langle F^{(3)}\right| c_{m}^{\dagger} c_{m}\left|F^{(3)}\right\rangle=\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}
$$

Hint: have a look at what you proved in question 1(f).
(i) Recall that in single-particle quantum mechanics, the wave function $\Psi(x)=\langle x \mid \Psi\rangle$ is just the position representation of the state $|\Psi\rangle$. With this in mind, compute the real-space, many-body wave function corresponding to the state $\left|F^{(3)}\right\rangle$. First, build a state with three fermions in definite positions, $\left|x_{1}, x_{2}, x_{3}\right\rangle=\hat{\psi}^{\dagger}\left(x_{3}\right) \hat{\psi}^{\dagger}\left(x_{2}\right) \hat{\psi}^{\dagger}\left(x_{1}\right) \mid$ vac \rangle. Then take its overlap with the ket of interest:

$$
\Psi\left(x_{1}, x_{2}, x_{3}\right)=\left\langle x_{1}, x_{2}, x_{3} \mid F^{(3)}\right\rangle=\langle\operatorname{vac}| \hat{\psi}\left(x_{1}\right) \hat{\psi}\left(x_{2}\right) \hat{\psi}\left(x_{3}\right) c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|\mathrm{vac}\rangle
$$

Hint: use the field operator expansion and remember what you did in question $1(\mathrm{~g})$.
2. Consider a collection of interacting fermions (again, spinless for simplicity). In second quantized form, the Hamiltonian is

$$
\hat{H}=\int d x \hat{\psi}^{\dagger}(x) T(x) \hat{\psi}(x)+\frac{1}{2} \int d x \int d y \hat{\psi}^{\dagger}(x) \hat{\psi}^{\dagger}(y) V(x, y) \hat{\psi}(y) \hat{\psi}(x)
$$

Suppose that the one-body term has eigenfunctions $\phi_{m}(x)$ that satisfy $T \phi_{m}=\varepsilon_{m} \phi_{m}$. Proceed by expressing the field operators as an expansion in these one-body modes:

$$
\hat{\psi}(x)=\sum_{m=1}^{\infty} \phi_{m}(x) c_{m} \text { and } \hat{\psi}^{\dagger}(x)=\sum_{m=1}^{\infty} \phi_{m}^{*}(x) c_{m}^{\dagger}
$$

(a) Show that the Hamiltonian can be written as

$$
\hat{H}=\sum_{m} \varepsilon_{m} c_{m}^{\dagger} c_{m}+\sum_{j, k, l, m} V_{j, k, l, m} c_{j}^{\dagger} c_{k}^{\dagger} c_{l} c_{m}
$$

in terms of a two-body matrix element

$$
V_{j, k, l, m}=\frac{1}{2} \int d x \int d y \phi_{j}^{*}(x) \phi_{k}^{*}(y) V(x, y) \phi_{l}(y) \phi_{m}(x) .
$$

(b) If the interactions are sufficiently weak, we may be able to treat their effect as a perturbation on the noninteracting system, which has a ground state $\left|F^{(N)}\right\rangle$. Show that the first-order energy shift is

$$
\Delta E=\sum_{i, j, k, l} V_{i, j, k, l}\left\langle F^{(N)}\right| c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}\left|F^{(N)}\right\rangle=\sum_{1 \leq i<j \leq N} 2\left(V_{i, j, j, i}-V_{i, j, i, j}\right)
$$

(c) Suppose that the fermions interact via a repulsive contact potential $V(x, y)=U a_{0} \delta(x-y)$, where U and a_{0} are positive constants with units of energy and length. Compute the first-order energy shift for this case. Explain why the answer you get is a direct consequence of the fermions being spinless.

