Physics 726: Assignment 2

(to be submitted by Tuesday, February 9, 2016)

1. A system of independent electrons is described by the purely bilinear Hamiltonian

$$
\hat{H}=\sum_{\alpha} \int d^{3} r \hat{\psi}_{\alpha}(\boldsymbol{r})^{\dagger} T(\boldsymbol{r}) \hat{\psi}_{\alpha}(\boldsymbol{r})
$$

Here, T is some differential operator, not necessarily $-\hbar^{2} \nabla^{2} / 2 m$, and α ranges over the two spin projections. For concreteness, suppose that the Hamiltonian describes electrons bound to a diatomic molecule.
(a) Consider a single-particle basis $\left\{\phi_{1}, \phi_{2}\right\}$ consisting of two states that are not eigenfunctions of T. We'll think of $\phi_{1}(\boldsymbol{r})$ as a wave function localized on atom 1 and $\phi_{2}(\boldsymbol{r})$ as a wave function localized on atom 2. Use the field operator expansion

$$
\hat{\psi}_{\alpha}(\boldsymbol{r})=\sum_{j=1,2} \phi_{j}(\boldsymbol{r}) \chi_{\alpha} c_{j, \alpha}
$$

to show that

$$
\hat{H}=\sum_{\alpha}\left(\begin{array}{ll}
c_{1, \alpha}^{\dagger} & c_{2, \alpha}^{\dagger}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon_{1} & -t \\
-t^{*} & \varepsilon_{2}
\end{array}\right)\binom{c_{1, \alpha}}{c_{2, \alpha}},
$$

where

$$
\varepsilon_{j}=\int d^{3} r \phi_{j}(\boldsymbol{r})^{*} T(\boldsymbol{r}) \phi_{j}(\boldsymbol{r}) \text { and }-t=\int d^{3} r \phi_{1}(\boldsymbol{r})^{*} T(\boldsymbol{r}) \phi_{2}(\boldsymbol{r}) .
$$

(b) For the case of a homonuclear atom ($\varepsilon_{1}=\varepsilon_{2} \equiv \varepsilon$), solve for the one- and two-particle ground states.
(c) Now consider the case where the atoms in the molecule are different $\left(\varepsilon_{1}=\varepsilon-\Delta\right.$ and $\left.\varepsilon_{2}=\varepsilon+\Delta\right)$. What is the average number of electrons on atom 1 and on atom 2 in the one-particle ground state?
2. The Hamiltonian

$$
\hat{H}=\varepsilon a^{\dagger} a+\frac{\Delta}{2}\left[a^{2}+\left(a^{\dagger}\right)^{2}\right]
$$

is built from bosonic creation and annihilation operators, a^{\dagger} and a.
(a) Show that there is an operator $\hat{A} \sim a+\lambda a^{\dagger}$ that obeys the bosonic commutation relation $\left[\hat{A}, \hat{A}^{\dagger}\right]=1$. Determine the constant of proportionality.
(b) Show that, up to a constant, $\hat{H}=\tilde{\varepsilon} \hat{A}^{\dagger} \hat{A}$, so long as you can find values $\tilde{\varepsilon}$ and λ such that

$$
\varepsilon=\frac{\tilde{\varepsilon}\left(1+\lambda^{2}\right)}{1-\lambda^{2}} \text { and } \Delta=\frac{2 \tilde{\varepsilon} \lambda}{1-\lambda^{2}} .
$$

(c) Explicitly construct the ground state and first three excited states. Hint: consider repeated applications of \hat{A}^{\dagger} on the bosonic vacuum.

