Physics 726: Assignment 1

(to be submitted by Tuesday, February 2, 2016)

1. A system of fermions is described by the Hamiltonian

$$
\hat{H}=\sum_{\alpha=1}^{3} \varepsilon_{\alpha} c_{\alpha}^{\dagger} c_{\alpha}
$$

where the energy levels obey the ordering $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$. The creation and annihilation operators, c and c^{\dagger} obey the usual anticommutation relations,

$$
\left\{c_{\alpha}, c_{\beta}^{\dagger}\right\}=c_{\alpha} c_{\beta}^{\dagger}+c_{\beta}^{\dagger} c_{\alpha}=\delta_{\alpha, \beta}
$$

(a) The zero-particle ground state is $\left|\psi_{0}^{(0)}\right\rangle=|\mathrm{vac}\rangle$, and the one-particle ground state is $\left|\psi_{0}^{(1)}\right\rangle=c_{1}^{\dagger}|\mathrm{vac}\rangle$. Write down the ground state $\left|\psi_{0}^{(2)}\right\rangle$, first excited state $\left|\psi_{1}^{(2)}\right\rangle$, and second excited $\left|\psi_{2}^{(2)}\right\rangle$ state of the two-particle system.
(b) Argue that $c_{\alpha}|\mathrm{vac}\rangle$ and $c_{\alpha}^{\dagger}\left|\psi_{0}^{(3)}\right\rangle$ both vanish.
(c) Ensure that $\left|\psi_{0}^{(2)}\right\rangle$ is properly normalized.
(d) Show explicitly that the energy eigenequation

$$
\hat{H}\left|\psi_{0}^{(2)}\right\rangle=\left(\varepsilon_{1}+\varepsilon_{2}\right)\left|\psi_{0}^{(2)}\right\rangle
$$

is satisfied. Hint: use the anticommutator and apply the property that $c_{\alpha}|\mathrm{vac}\rangle=0$.
2. A system of bosons is described by the Hamiltonian

$$
\hat{H}=\sum_{\alpha=1}^{3} \varepsilon_{\alpha} a_{\alpha}^{\dagger} a_{\alpha} .
$$

As before, $\varepsilon_{1}<\varepsilon_{2}<\varepsilon_{3}$. The creation and annihilation operators, a and a^{\dagger} obey the usual commutation relations,

$$
\left[a_{\alpha}, a_{\beta}^{\dagger}\right]=a_{\alpha} a_{\beta}^{\dagger}-a_{\beta}^{\dagger} a_{\alpha}=\delta_{\alpha, \beta}
$$

(a) The zero-particle ground state is $\left|\psi_{0}^{(0)}\right\rangle=|\mathrm{vac}\rangle$, and the one-particle ground state is $\left|\psi_{0}^{(1)}\right\rangle=a_{1}^{\dagger}|\mathrm{vac}\rangle$. Write down the ground states $\left|\psi_{0}^{(2)}\right\rangle$ and $\left|\psi_{0}^{(3)}\right\rangle$ of the two- and three-particle system.
(b) Normalize $\left|\psi_{0}^{(1)}\right\rangle,\left|\psi_{0}^{(2)}\right\rangle$, and $\left|\psi_{0}^{(3)}\right\rangle$. Solve by recursion-or just guess-the normalization factor for $\left|\psi_{0}^{(n)}\right\rangle$.
(c) Show explicitly that

$$
\hat{H}\left|\psi_{0}^{(3)}\right\rangle=3 \varepsilon_{1}\left|\psi_{0}^{(3)}\right\rangle .
$$

