Physics 711: Assignment 3

(to be submitted by Wednesday, October 1, 2025)

I invite you to attempt Assignment 3 and to submit all your work for Questions 1(a-e) and 2(a-e). Please turn in a paper copy in class. Also email to kbeach@olemiss.edu a single Wolfram Notebook, sent as an attachment, that contains any relevant Mathematica code. Use the naming convention Phys711-A3-webid.nb, and be sure to include Phys711-Fall2025-webid Assignment 3 Submission on the subject line. (Be sure to replace webid with your own personal UM WebID; mine, for instance, is kbeach.)

- 1. The commutator of operators \hat{A} and \hat{B} is defined as $[\hat{A}, \hat{B}] = \hat{A}\hat{B} \hat{B}\hat{A}$. (Note that version 14.3 of Mathematica introduces the commands Commutator and NonCommutativeExpand.)
 - (a) Prove that $[\hat{A}, \hat{B}] = -[\hat{B}, \hat{A}]$ and $[\hat{A}, \hat{A}] = 0$.
 - (b) For operators \hat{A} , \hat{B} , and \hat{C} and complex numbers α and β , show that

$$[\alpha \hat{A} + \beta \hat{B}, \hat{C}] = \alpha [\hat{A}, \hat{C}] + \beta [\hat{B}, \hat{C}].$$

(c) Prove that the commutator distributes over an operator product as follows:

$$[\hat{A}, \hat{B}\hat{C}] = [\hat{A}, \hat{B}]\hat{C} + \hat{B}[\hat{A}, \hat{C}].$$

(d) Prove the famous Jacobi identity:

$$[\hat{A}, [\hat{B}, \hat{C}]] + [\hat{B}, [\hat{C}, \hat{A}]] + [\hat{C}, [\hat{A}, \hat{B}]] = 0.$$

(e) Consider operators \hat{x} and \hat{p} satisfying $[\hat{x}, \hat{p}] = i\hbar$. Argue that $[\hat{x}, \hat{p}^2] = 2i\hbar\hat{p}$, $[\hat{x}, \hat{p}^3] = 3i\hbar\hat{p}^2$, and more generally, $[\hat{x}, \hat{p}^n] = ni\hbar\hat{p}^{n-1}$. Use this result to show that

$$[\hat{x}, f(\hat{p})] = i\hbar f'(\hat{p}),$$

where *f* is any smooth function.

2. In class we considered a planar quantum rotor model with a symmetry-breaking term that favours angular orientation near $\phi = 0$:

$$\hat{H} = \frac{\hat{L}^2}{2I} - I\Omega^2 \cos \hat{\phi}.$$

Here, I is the moment of inertia, and Ω is the natural frequency of the corresponding classical problem in the small-amplitude-oscillation limit. The operators $\hat{\phi}$ and \hat{L} obey the canonical commutation relationship $[\hat{\phi},\hat{L}]=i\hbar$. We made the decision to work in the ϕ -representation, so that the operators take the form ϕ and $L=(\hbar/i)\partial/\partial\phi$ and act on a wave function $\psi(\phi)$.

(a) Show that states $\chi_m(\phi) \sim \exp(im\phi)$ are eigenstates of the angular momentum operator with eigenvalue $\hbar m$. Determine the proper normalization of the states. Here's a Mathematica version of the solution:

(b) Argue that the parity operation (reflection across the preferred axis, $\phi \to -\phi$) is a symmetry of the Hamiltonian. Construct a basis of states of definite even (P=+1) and odd (P=-1) parity from linear combinations of the angular momentum states $\chi_m(\phi)$. Explain how this basis can be used to block diagonalize the Hamiltonian.

- (c) Consider a truncated basis that contains only the two lowest-lying states in each of the even- and odd-parity sectors. Write the time-independent Schrödinger equation as two 2×2 matrix eigenvector problems.
- (d) Solve the even-parity 2×2 eigenproblem. (You are welcome to make use of Mathematica's Eigensystem or its Eigenvectors and Eigenvalues commands.) For the ground state, plot the probability density $|\psi(\phi)|^2$ of finding the rotor in the vicinity of angle ϕ . Do this for small, intermediate, and large values of Ω .
- (e) Compute the expectation values of \hat{H} with respect to the next-lowest-lying states in each sector. Based on energy comparisons, comment on the appropriateness of the basis truncation.