
Physics 711: Assignment 3
(to be submitted by Wednesday, October 1, 2025)

I invite you to attempt Assignment 3 and to submit all your work for Questions 1(a–e) and 2(a–e). Please
turn in a paper copy in class. Also email to kbeach@olemiss.edu a singleWolframNotebook, sent as an at-
tachment, that contains any relevantMathematica code. Use the naming convention Phys711-A3-webid.nb,
and be sure to include Phys711-Fall2025-webid Assignment 3 Submission on the subject line. (Be sure to
replace webid with your own personal UMWebID; mine, for instance, is kbeach.)

1. The commutator of operators 𝐴̂ and 𝐵̂ is defined as [𝐴̂, 𝐵̂] = 𝐴̂𝐵̂ − 𝐵̂𝐴̂. (Note that version 14.3 of Mathe-
matica introduces the commands Commutator and NonCommutativeExpand.)

(a) Prove that [𝐴̂, 𝐵̂] = −[𝐵̂, 𝐴̂] and [𝐴̂, 𝐴̂] = 0.
(b) For operators 𝐴̂, 𝐵̂, and 𝐶̂ and complex numbers 𝛼 and 𝛽, show that

[𝛼𝐴̂ + 𝛽𝐵̂, 𝐶̂] = 𝛼[𝐴̂, 𝐶̂] + 𝛽[𝐵̂, 𝐶̂].

(c) Prove that the commutator distributes over an operator product as follows:

[𝐴̂, 𝐵̂𝐶̂] = [𝐴̂, 𝐵̂]𝐶̂ + 𝐵̂[𝐴̂, 𝐶̂].

(d) Prove the famous Jacobi identity:

[𝐴̂, [𝐵̂, 𝐶̂]] + [𝐵̂, [𝐶̂, 𝐴̂]] + [𝐶̂, [𝐴̂, 𝐵̂]] = 0.

(e) Consider operators 𝑥̂ and 𝑝̂ satisfying [𝑥̂, 𝑝̂] = 𝑖ℏ. Argue that [𝑥̂, 𝑝̂2] = 2𝑖ℏ𝑝̂, [𝑥̂, 𝑝̂3] = 3𝑖ℏ𝑝̂2, and
more generally, [𝑥̂, 𝑝̂𝑛] = 𝑛𝑖ℏ𝑝̂𝑛−1. Use this result to show that

[𝑥̂, 𝑓(𝑝̂)] = 𝑖ℏ𝑓′(𝑝̂),

where 𝑓 is any smooth function.

2. In classwe considered a planar quantum rotormodel with a symmetry-breaking term that favours angular
orientation near 𝜙 = 0:

𝐻̂ = 𝐿̂2
2𝐼 − 𝐼Ω2 cos 𝜙̂.

Here, 𝐼 is the moment of inertia, andΩ is the natural frequency of the corresponding classical problem in
the small-amplitude-oscillation limit. The operators 𝜙̂ and 𝐿̂ obey the canonical commutation relation-
ship [𝜙̂, 𝐿̂] = 𝑖ℏ. We made the decision to work in the 𝜙-representation, so that the operators take the
form 𝜙 and 𝐿 = (ℏ∕𝑖)𝜕∕𝜕𝜙 and act on a wave function 𝜓(𝜙).

(a) Show that states 𝜒𝑚(𝜙) ∼ exp(𝑖𝑚𝜙) are eigenstates of the angular momentum operator with eigen-
value ℏ𝑚. Determine the proper normalization of the states. Here’s a Mathematica version of the
solution:

\[Chi][\[Phi]_] = Exp[I m \[Phi]]/Sqrt[2 \[Pi]]
Assuming[m \[Element] Integers, Integrate[Conjugate[\[Chi][\[Phi]]] \[Chi][\[Phi]],

{\[Phi], 0, 2 \[Pi]}]]
L = (\[HBar]/I) D[#, \[Phi]] &
L[\[Chi][\[Phi]]]/\[Chi][\[Phi]]

(b) Argue that the parity operation (reflection across the preferred axis, 𝜙 → −𝜙) is a symmetry of the
Hamiltonian. Construct a basis of states of definite even (𝑃 = +1) and odd (𝑃 = −1) parity from
linear combinations of the angular momentum states 𝜒𝑚(𝜙). Explain how this basis can be used to
block diagonalize the Hamiltonian.
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(c) Consider a truncated basis that contains only the two lowest-lying states in each of the even- and
odd-parity sectors. Write the time-independent Schrödinger equation as two 2×2matrix eigenvector
problems.

(d) Solve the even-parity 2×2 eigenproblem. (You arewelcome tomakeuse ofMathematica’s Eigensystem
or its Eigenvectors and Eigenvalues commands.) For the ground state, plot the probability density
|𝜓(𝜙)|2 of finding the rotor in the vicinity of angle 𝜙. Do this for small, intermediate, and large values
of Ω.

(e) Compute the expectation values of 𝐻̂with respect to the next-lowest-lying states in each sector. Based
on energy comparisons, comment on the appropriateness of the basis truncation.
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