Physics 711: Assignment 3
(to be submitted by Wednesday, October 1, 2025)

I invite you to attempt Assignment 3 and to submit all your work for Questions 1(a—e) and 2(a—e). Please
turn in a paper copy in class. Also email to kbeach@olemiss.edu asingle Wolfram Notebook, sent as an at-
tachment, that contains any relevant Mathematica code. Use the naming convention Phys711-A3-webid.nb,
and be sure to include Phys711-Fal12025-webid Assignment 3 Submission on the subject line. (Be sure to
replace webid with your own personal UM WebID; mine, for instance, is kbeach.)

1. The commutator of operators A and B is defined as [A, B] = AB — BA. (Note that version 14.3 of Mathe-
matica introduces the commands Commutator and NonCommutativeExpand.)
(a) Prove that [A,B] = —[B, A] and [4, A] = 0.

(b) For operators A, B, and € and complex numbers a and 3, show that
[aA + BB,C] = a[A,C] + B[B,C].
(c) Prove that the commutator distributes over an operator product as follows:
[4,BC] = [A,B]C + B[A,C].
(d) Prove the famous Jacobi identity:
[A,[B,C]] + [B,[C, Al + [C,[A,B]] = 0.

(e) Consider operators £ and p satisfying [%, p] = ih. Argue that [, p?] = 2ihp, [%, p?] = 3ihp?, and

more generally, [£, p"] = nihp"~!. Use this result to show that
[x, f(P)] = inf'(p),
where f is any smooth function.

2. Inclass we considered a planar quantum rotor model with a symmetry-breaking term that favours angular

orientation near ¢ = 0:

D - R

H= 5 IO~ cos ¢.
Here, I is the moment of inertia, and ( is the natural frequency of the corresponding classical problem in
the small-amplitude-oscillation limit. The operators ¢ and L obey the canonical commutation relation-
ship [¢,L] = ih. We made the decision to work in the ¢-representation, so that the operators take the

form ¢ and L = (h/i)d/d¢ and act on a wave function ().

(a) Show that states y,,(¢) ~ exp(im¢) are eigenstates of the angular momentum operator with eigen-
value im. Determine the proper normalization of the states. Here’s a Mathematica version of the
solution:

\[Chil [\[Phi]_] = Exp[I m \[Phill/Sqrt[2 \[Pil]

Assuming[m \[Element] Integers, Integrate[Conjugate[\[Chi] [\[Phi]l]l] \[Chil [\[Phil],
{\[Phil, 0, 2 \[Pi]l}]]

L = (\[HBar]/I) D[#, \[Phil] &

LI\N[Chi] [\[Phil]]/\[Chi] [\ [Phi]]

(b) Argue that the parity operation (reflection across the preferred axis, ¢ — —¢) is a symmetry of the
Hamiltonian. Construct a basis of states of definite even (P = +1) and odd (P = —1) parity from
linear combinations of the angular momentum states y,,(¢). Explain how this basis can be used to
block diagonalize the Hamiltonian.
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(c) Consider a truncated basis that contains only the two lowest-lying states in each of the even- and
odd-parity sectors. Write the time-independent Schrodinger equation as two 2X2 matrix eigenvector
problems.

(d) Solve the even-parity 2x2 eigenproblem. (You are welcome to make use of Mathematica’sEigensystem
or its Eigenvectors and Eigenvalues commands.) For the ground state, plot the probability density
|(¢)|? of finding the rotor in the vicinity of angle ¢. Do this for small, intermediate, and large values
of Q.

(e) Compute the expectation values of H with respect to the next-lowest-lying states in each sector. Based
on energy comparisons, comment on the appropriateness of the basis truncation.



