Physics 711: Assignment 1

(to be submitted by Friday, September 5, 2025)

I invite you to attempt Assignment 1 and to submit all your work for Questions 1(a-g) and 2(a-d). Please turn in a paper copy in class. Also email to kbeach@olemiss.edu a single Wolfram Notebook, sent as an attachment, that contains the relevant Mathematica code. Use the naming convention Phys711-A1-webid.nb, and be sure to include Phys711-Fall2025-webid Assignment 1 Submission on the subject line. (Be sure to replace webid with your own personal UM WebID; mine, for instance, is kbeach.)

- 1. A linear vector space is spanned by three orthonomal vectors, denoted by the kets $|a\rangle$, $|b\rangle$, and $|c\rangle$. A state $|\psi\rangle$ is constructed as the linear combination $|\psi\rangle = \alpha|a\rangle + \beta|b\rangle + \gamma|c\rangle$, where $\alpha, \beta, \gamma \in \mathbb{C}$. The corresponding state in the dual space is $\langle \psi | = \alpha^* \langle a | + \beta^* \langle b | + \gamma^* \langle c |$.
 - (a) Show that the inner product (or "overlap") is

$$\langle \psi | \psi \rangle = |\alpha|^2 + |\beta|^2 + |\gamma|^2$$

and that

$$|\tilde{\psi}\rangle = \frac{|\psi\rangle}{\sqrt{\langle\psi|\psi\rangle}} = \frac{\alpha|a\rangle + \beta|b\rangle + \gamma|c\rangle}{\sqrt{|\alpha|^2 + |\beta|^2 + |\gamma|^2}}.$$

is a properly normalized state.

- (b) Suppose that the system is prepared in the state $|\psi\rangle$ and we perform an experiment to determine if the system is found in microstate a, b, or c (mutually exclusive after a measurement). What is the classical probability of finding the system in microstate b? *Hint*: You can understand this as the expectation value of the filtering operator $\hat{P}_b = |b\rangle\langle b|$ with respect to $|\psi\rangle$.
- (c) Prove that $\hat{1} = |a\rangle\langle a| + |b\rangle\langle b| + |c\rangle\langle c|$ is the identity operator for the vector space.
- (d) For the cyclic permutation operator $\hat{T} = |b\rangle\langle a| + |c\rangle\langle b| + |a\rangle\langle c|$, compute the expectation value $\langle \tilde{\psi} | \hat{T} | \tilde{\psi} \rangle = \langle \psi | \hat{T} | \psi \rangle / \langle \psi | \psi \rangle$. You should be able to show that

$$\langle \tilde{\psi} | \hat{T} | \tilde{\psi} \rangle = \frac{\alpha^* \gamma + \beta^* \alpha + \gamma^* \beta}{|\alpha|^2 + |\beta|^2 + |\gamma|^2}.$$

(e) Find the eigenstates and corresponding eigenvalues of \hat{T} . Proceed by computing the matrix elements in the abc basis:

$$T = \begin{pmatrix} \langle a | \hat{T} | a \rangle & \langle a | \hat{T} | b \rangle & \langle a | \hat{T} | c \rangle \\ \langle b | \hat{T} | a \rangle & \langle b | \hat{T} | b \rangle & \langle b | \hat{T} | c \rangle \\ \langle c | \hat{T} | a \rangle & \langle c | \hat{T} | b \rangle & \langle c | \hat{T} | c \rangle \end{pmatrix}$$

```
T = {{0, 1, 0}, {0, 0, 1}, {1, 0, 0}}

{Evals, Evecs} = Eigensystem[T]

Evecs = Normalize /@ Evecs
```

(f) Find the unitary transformation matrix V such that

$$V^{\dagger}TV = \begin{pmatrix} 1 & 0 & 0\\ 0 & -1/2 + i\sqrt{3}/2 & 0\\ 0 & 0 & -1/2 - i\sqrt{3}/2 \end{pmatrix}$$

V = Transpose[Evecs]
Expand[Transpose[Conjugate[V]].T.V]

(g) Prove that $\hat{T}^{-1} = \hat{T}^{\dagger}$ is unitary and that $\hat{T}^3 = \hat{1}$.

Inverse[T] == Transpose[Conjugate[T]]
T.T.T == IdentityMatrix[3]

2. Consider the 4×4 matrix

$$h = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}.$$

Suppose that a quantum system has the Hamiltonian matrix $H = h + h^{\dagger}$.

h = ArrayReshape[Range[16], {4, 4}]
H = h + Transpose[h]
H // MatrixForm

- (a) Express the matrix elements $h_{i,j}$ as a function of the rows i = 1, 2, 3, 4 and columns j = 1, 2, 3, 4. Find an analogous index-notation expression for $H_{i,j}$.
- (b) Consider the operator

$$\hat{H} = \sum_{i=1}^{4} \sum_{j=1}^{4} |i\rangle H_{i,j} \langle j|$$

that acts on vectors in the linear vector space of kets. First verify that $H_{i,j} = \langle i|\hat{H}|j\rangle$. Then prove that two applications of the operator are equivalent to

$$\hat{H}^2 = \sum_{i=1}^4 \sum_{j=1}^4 |i\rangle \left(\sum_{k=1}^4 H_{i,k} H_{k,j}\right) \langle j|.$$

 $H.H == Table[Sum[H[[i,k]]*H[[k,j]],{k,1,4}],{i,1,4},{j,1,4}]$

(c) Solve for the energy eigenstates and corresponding energy eigenvalues.

{Evals, Evecs} = Eigensystem[H]

Argue that $|\phi_0\rangle = 2|1\rangle - 3|2\rangle + |4\rangle$ and $|\phi_0'\rangle = |1\rangle - 2|2\rangle + |3\rangle$ are states of zero energy. Show explicitly that \hat{H} annihilates both kets.

(d) For the operator \hat{N} obeying $\hat{N}|n\rangle = n|n\rangle$, compute the expectation values of \hat{N} with respect to $|\phi_0\rangle$ and $|\phi_0'\rangle$. As a check, note that these have to take on a value between 1 and 4.

2