Physics 651: Exercise 4

(not for submission)

To begin, we summarize the key results of vector calculus that we discussed in class. In our notation, f is a

scalar field and F is a vector field; the nabla symbol denotes the gradient (viz., V = 29, + 9, + 29, in rectangular

coordinates, V = 6, + (1/ p)q36¢ + 20, in cylindrical polar); and dR represents the boundary of some region R.

» The fundamental theorem for line integrals states that

/Vf'dr = f(ry) — f(x1),
C

where C is a directed contour from r; to r,. The result depends only on the starting and end points and not
on the particular path taken by C. (It explains why forces derived from a potential must obey an energy
conservation law.)

« The divergence theorem (also known as Gauss’s theorem or Ostrogradsky’s theorem) states that

fV-FdV:f F.dS,
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where dV is a volume element, and dS = AdS is the directed surface element pointing to the exterior of
V. This result connects the charges contained in V' to the flux through its boundary surface.

/(VxF)-dS=/F-dr.
S as

Here, S is an open surface, and dS is a contour along the boundary of S directed in a right-hand sense with
respect to the orientation of dS. This result connects the circulation of a field on the surface to the field’s
net contribution around the surface’s edge.

o Stoke’s theorem states that

1. Consider the vector field

JoJe) sin’ ¢ + p(cos ¢ sin p)¢ + z2

F=F(p,¢,2z) =
(2% + p2sin’® ¢)3/2

expressed in cylindrical polar coordinates.

(a) Explain why the position r = pp + z2 has a differential dr = (dp)p + p(d$)P + (dz)Z2.

(b) Consider the line integral along a contour C that can be parameterized by p(t) = ¢t, ¢(t) = 7wt/2,
z(t) = ¢ cos rt with ¢ ranging from 0 to 1. Evaluate the integral f. F - dr = foldt --- explicitly to
obtain (2 —/2)/2¢.

(c) Find a scalar field V(r) such that F = —VV.

(d) Now use the fundamental theorem for line integrals to confirm that

/F-dr=2_\/§.
c
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2. Verify Stokes’ theorem for the vector field F(x, y, z) = —xyX + xy + xzZ and surface S, where Sisa2 x 2
square patch centred on the origin with corners at (-1, —1,0) and (1, 1, 0).



We follow the Fourier transform convention used in the Physical Mathematics textbook:
Y R .
f&x)=— f dk f(k)e™™ = FF(k)](x).

)= = f dx f(x)ex = FLFCOIR).

The default convention in Mathematica is almost the same, but the signs in the arguments of the exponentials
are swapped (e** < e~*) We can use the FourierParameters option to modify the convention to match that
of the textbook. For convenience, let’s define shortcut functions:

FT[f_, x_, k_] := FourierTransform[f, x, k, FourierParameters -> {0, -1}]
IFT[ff_, k_, x_] := InverseFourierTransform[ff, k, x, FourierParameters -> {0, -1}]

Complete the following questions using any combination of analytical and computer-assisted (Mathematica)
solution methods.

3. Explore the following Fourier transform pairs.

FT[1, x, k]
IFT[DiracDeltal[x], x, k]

glx_] = Sartlal Exp[-x"2/2 a~2];
Assuming[a > 0, FT[glx], x, k1]
Assuming[a > 0, Simplifylglx] /. {a -> 1/a, x -> k}]1]

FT[Sqrt[2 Pi] Sinc[x], x, k]
FT[HeavisideTheta[x + 1] - HeavisideThetal[x - 1], x, k]

FT[Sqrt[2 Pi] HeavisideThetal[x] Exp[-a x], x, k]
Assumingla > 0, IFT[1/(a + I k), k, x]]

4. Here we verify the convolution theorem, f * g = f§, with the definition

(f * g)x) = f —f(x D).

in the case where f(x) = g(x) = 6(x + 1/2) — 6(x — 1/2) are both square bump functions of unit area.

Note that Mathematica’s Convolve does not include the 1/4/27 factor, which has to be put in by hand.
Verify the theorem for other choices of f(x) # g(x).

Convolve [UnitBox[y], UnitBox[yl, y, x]/Sqrt[2 Pi]
FT[/, x, k]
FT[UnitBox[x], x, k]~2




