
Physics 651: Exercise 2
(not for submission)

1. The kets |𝑢⟩, |𝑣⟩, and |𝑤⟩ belong to a vector space that is spanned by the orthonormal basis {|𝑏𝑖⟩}. Let
𝑃̂ =

∑
𝑖,𝑗|𝑏𝑖⟩𝑃𝑖,𝑗⟨𝑏𝑗| and 𝑄̂ =

∑
𝑖,𝑗|𝑏𝑖⟩𝑄𝑖,𝑗⟨𝑏𝑗| be linear operators acting on that space. Which of the

following expressions is incorrect?

(a) ⟨𝑢|𝑃̂|𝑣⟩∗ = ⟨𝑣|𝑃̂†|𝑢⟩
(b)

(
|𝑢⟩⟨𝑣|

)
|𝑤⟩ = ⟨𝑢|𝑣⟩|𝑤⟩

(c) ⟨𝑏𝑖|𝑃̂𝑄̂|𝑢⟩ =
∑

𝑗,𝑘 𝑃𝑖,𝑗𝑄𝑗,𝑘𝑢𝑘

(d)
(
𝑃̂𝑄̂|𝑢⟩

)†
= ⟨𝑢|𝑄̂†𝑃̂†

2. Let 𝛼, 𝛽, and 𝛾 be complex numbers and |𝑢⟩, |𝑣⟩, and |𝑤⟩ be elements of a complex vector space. Which
of the following expressions is correct?

(a)
(
|𝑢⟩⟨𝑣|

)
|𝑤⟩ = ⟨𝑣|𝑤⟩|𝑢⟩

(b) ⟨𝑢|
(
|𝑣⟩⟨𝑤|

)
= ⟨𝑢|𝑣⟩∗|𝑤⟩

(c) (𝛼|𝑢⟩⊗ |𝑣⟩⊗ |𝑤⟩
)†
= 𝛼∗⟨𝑤|⊗ ⟨𝑣|⊗ ⟨𝑢|

(d) (𝛼|𝑢⟩ + 𝛽|𝑣⟩ + 𝛾|𝑤⟩
)†
= 𝛼⟨𝑢| + 𝛽⟨𝑣| + 𝛾⟨𝑤|

3. Associatedwith a quantum system in its ground state |𝜓⟩ is a density operator 𝜌̂ = |𝜓⟩⟨𝜓|. When expressed
in terms of a particular basis {|𝑛⟩}, the ground state has component amplitudes 𝜓𝑛 = ⟨𝑛|𝜓⟩. For an
observable 𝑂̂, having matrix elements ⟨𝑚|𝑂̂|𝑛⟩ = 𝑂𝑚,𝑛, the ground state expectation value is

⟨𝑂̂⟩ =
tr 𝜌̂𝑂̂
tr 𝜌̂

.

Show that this is equivalent to ∑
𝑚,𝑛 𝜓

∗
𝑚𝑂𝑚,𝑛𝜓𝑛

∑
𝑘|𝜓𝑘|2

.

4. The determinant of a 2 × 2matrix A is given by

det𝐴 =
2∑

𝑖=1

2∑

𝑗=1
𝜖𝑖,𝑗𝐴1,𝑖𝐴2,𝑗 .

What is the correct definition of the alternating symbol?

(a) 𝜖1,1 = 𝜖2,2 = 0 and 𝜖1,2 = 𝜖2,1 = 1
(b) 𝜖1,1 = 𝜖2,2 = 0 and 𝜖1,2 = −𝜖2,1 = 1
(c) 𝜖1,1 = 𝜖2,2 = 1 and 𝜖1,2 = 𝜖2,1 = −1
(d) 𝜖1,1 = −𝜖2,2 = 1 and 𝜖1,2 = 𝜖2,1 = 0



5. The determinant of a 4 × 4matrix A is given by

det𝐴 =
4∑

𝑖=1

4∑

𝑗=1

4∑

𝑘=1

4∑

𝑙=1
𝜖𝑖,𝑗,𝑘,𝑙𝐴1,𝑖𝐴2,𝑗𝐴3,𝑘𝐴4,𝑙,

where 𝜖𝑖,𝑗,𝑘,𝑙 is the 4-index Levi-Civita symbol. Which one of the following terms appears in the sum.

(a) +𝐴1,1𝐴2,2𝐴3,4𝐴4,3

(b) −𝐴1,3𝐴2,1𝐴3,4𝐴4,2

(c) +𝐴1,1𝐴2,2𝐴3,1𝐴4,2

(d) −𝐴1,3𝐴2,3𝐴3,3𝐴4,3

6. Here, |𝑢⟩ and |𝑣⟩ are elements of a vector space; 𝐴̂, 𝐵̂, and 𝐶̂ are linear operators acting on the space;
and {|𝑖⟩} constitutes an orthonormal basis for the space. Use the technique of inserting representations of
unity, 1̂ =

∑
𝑖|𝑖⟩⟨𝑖|, to prove that

⟨𝑢|𝐴̂𝐵̂𝐶̂|𝑣⟩∗ = ⟨𝑣|𝐶̂†𝐵̂†𝐴̂†|𝑢⟩.

7. Rotation about the 𝑥, 𝑦, and 𝑧 axes (in the right-hand sense about the directions 𝐞1, 𝐞2, and 𝐞3) is imple-
mented by matrices

𝑅1(𝜃) =
⎛
⎜
⎝

1 0 0
0 cos 𝜃 −sin 𝜃
0 sin 𝜃 cos 𝜃

⎞
⎟
⎠
, 𝑅2(𝜃) =

⎛
⎜
⎝

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

⎞
⎟
⎠
, 𝑅3(𝜃) =

⎛
⎜
⎝

cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎞
⎟
⎠
.

(a) Show that det𝑅𝑖(𝜃) = 1 for each of 𝑖 = 1, 2, 3 and for all values of the angle 𝜃.
(b) Prove that 𝑅𝑖(−𝜃) = 𝑅𝑖(𝜃)𝑇 = 𝑅𝑖(𝜃)−1.
(c) Evaluate these three composite rotations:

𝐴 = 𝑅1(−𝜋∕2)𝑅2(𝜋∕2)𝑅1(𝜋∕2),
𝐵 = 𝑅3(𝜋∕2)𝑅2(𝜋∕4)𝑅1(𝜋∕2),
𝐶 = 𝑅1(−𝜋∕4)𝑅3(𝜋∕2)𝑅1(𝜃)𝑅3(−𝜋∕2)𝑅1(𝜋∕4).

In other words, evaluate each of the matrix products to determine the resulting 3 × 3matrix.

(d) Prove that 𝐴 corresponds to a rotation about 𝐞3; 𝐵 to a rotation about 𝐞1 + (1 +
√
2)𝐞2 + 𝐞3; and

𝐶 to a rotation about −𝐞2 + 𝐞3. Hint: One way to think about this is that if matrix 𝑅 describes a
rotation about an axis parallel to the column vector 𝑒, then 𝑅 must leave 𝑒 invariant; i.e., 𝑅𝑒 = 𝑒,
which says that 𝑒 is an eigenvector of 𝑅 with eigenvalue 1. If this holds for 𝑅 = 𝑅(𝜃), then the same
must be true for 𝑅(−𝜃) = 𝑅−1 = 𝑅𝑇 . Hence, to determine the axes of rotation, we can solve the
eigenproblems for (𝐴 + 𝐴𝑇)∕2, (𝐵 + 𝐵𝑇)∕2, and (𝐶 + 𝐶𝑇)∕2, and pick out the eigenvectors with
eigenvalue 1. Alternatively, we can look for the vectors that are annihilated by 𝐴 −𝐴𝑇 , 𝐵 − 𝐵𝑇 , and
𝐶 − 𝐶𝑇 .



(e) Note that 1 + 2 cos 𝜃 = tr𝑅3(𝜃) = tr 𝑅̃−1𝑅̃𝑅3(𝜃) = tr 𝑅̃𝑅3(𝜃)𝑅̃−1, for an arbitrary rotation 𝑅̃. This
tells us that the trace always reveals the rotation angle. Use tr𝐴 = 1 + 2 cos 𝜃𝐴 = 1 and tr𝐵 =
1 + 2 cos 𝜃𝐵 = 1∕

√
2 to determine the angles of rotation. Evaluate tr𝐶 = 1 + 2 cos 𝜃 to confirm that

the parameter 𝜃 does in fact represent the rotation angle.

R1[\[Theta]_] := { { 1, 0, 0}, {0, Cos[\[Theta]], -Sin[\[Theta]]}, {0, Sin[\[Theta]],
Cos[\[Theta]]}}

R2[\[Theta]_] := { { Cos[\[Theta]], 0, Sin[\[Theta]]}, {0, 1, 0}, {-Sin[\[Theta]], 0,
Cos[\[Theta]]}}

R3[\[Theta]_] := { { Cos[\[Theta]], -Sin[\[Theta]], 0}, {Sin[\[Theta]], Cos[\[Theta]],
0}, {0, 0, 1}}

A = R1[-\[Pi]/2] . R2[\[Pi]/2] . R1[\[Pi]/2]
B = R3[\[Pi]/2] . R2[\[Pi]/4] . R1[\[Pi]/2]
CC = R1[-\[Pi]/4] . R3[\[Pi]/2] . R1[\[Theta]] . R3[-\[Pi]/2] . R1[\[Pi]/4]
Solve[Tr[A] == 1 + 2 Cos[\[Theta]], \[Theta]]
Solve[Tr[A] == 1 + 2 Cos[\[Theta]], \[Theta]]
Solve[Tr[A] == 1 + 2 Cos[\[Theta]], \[Theta]]
EVA = Simplify[Eigensystem[(A + Transpose[A])/2]]
EVB = Simplify[Eigensystem[(B + Transpose[B])/2]]
EVC = Simplify[Eigensystem[(CC + Transpose[CC])/2]]
MemberQ[EVA[[1]], 1]
For[i = 1, i <= 3, ++i, If[EVA[[1]][[i]] == 1, Print[EVA[[2]][[i]]]]]
MemberQ[EVB[[1]], 1]
For[i = 1, i <= 3, ++i, If[EVB[[1]][[i]] == 1, Print[EVB[[2]][[i]]]]]
MemberQ[EVC[[1]], 1]
For[i = 1, i <= 3, ++i, If[EVC[[1]][[i]] == 1, Print[EVC[[2]][[i]]]]]

(f) Reflection across the 𝑥 = 0 plane is represented by the matrix

𝑀 =
⎛
⎜
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎟
⎠
.

This maps every column vector

⎛
⎜
⎝

𝑥
𝑦
𝑧

⎞
⎟
⎠
to a reflected vector

⎛
⎜
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

𝑥
𝑦
𝑧

⎞
⎟
⎠
=
⎛
⎜
⎝

−𝑥
𝑦
𝑧

⎞
⎟
⎠
.

Use a similarity transformation to determine the matrix𝑀′ = 𝑈−1𝑀𝑈 that reflects across the plane
defined by 𝑦 = −𝑥.


