
Physics 651: Assignment 3
(to be submitted by Tuesday, October 1, 2024)

I invite you to attempt Assignment 3 and to turn in your work for Questions 1–3. Any hand-written deriva-
tions should be submitted to me in hard copy. Any computational results should be collected in a single
WolframNotebook and sent as an attachment to kbeach@olemiss.edu. Please follow the naming conven-
tion Phys651-A3-webid.nb, and be sure to include the subject line Phys651-Fall2024-webid Assignment 3
Submission.

1. The Cauchy-Schwarz inequality states that (𝑢, 𝑣)2 ≤ (𝑢, 𝑢)(𝑣, 𝑣) for any compatible vectors 𝑢 and 𝑣 in a
vector space endowed with an inner product ( ⋅ , ⋅ ). Solve these first two problems by hand by applying
Cauchy-Schwarz with an appropriate choice of 𝑢 and 𝑣.

(a) Prove that for any 𝑎, 𝑏, 𝑐 > 0,
𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 ≤ 𝑎2 + 𝑏2 + 𝑐2.

You may find that thisMathematica code helps to clarify your thinking:

u = {a, b, c}
v = RotateLeft[u]
(u.v)^2
(u.u) (v.v)
Assuming[a > 0 && b > 0 && c > 0, (u.v)]
Assuming[a > 0 && b > 0 && c > 0, Refine[Sqrt[(u.u) (v.v)]]]

(b) Prove (Nesbitt’s Inequality) that for any 𝑎, 𝑏, 𝑐 > 0,

𝑎
𝑏 + 𝑐

+ 𝑏
𝑎 + 𝑐 +

𝑐
𝑎 + 𝑏

≥ 3
2 .

The following code may help. If you’re really stuck, have a look at this video.

u = {Sqrt[b + c], Sqrt[a + c], Sqrt[a + b]}
v = 1/u
Total[Array[#1/(#2 + #3) & @@ RotateRight[{a, b, c}, #] &, 3]] >= 3/2
(u.v)^2
Expand[(u.u)(v.v)]

The following code is not a proof, but it will let you verify that the inequality is satisfied for 5 000
random instantiations of triples 𝑎, 𝑏, 𝑐 drawn uniformly from the interval [0, 10 000). Give it a try.

vals = Table[{RandomReal[10000], RandomReal[10000], RandomReal[10000]}, {i, 1, 5000}];
f[a_, b_, c_] := a/(b + c) + b/(a + c) + c/(a + b)
And @@ (# >= 3/2 & /@ f @@@ vals)
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2. A tiny ball ofmass𝑚 rolls on a curved two-dimensional surface, parameterized by 𝑧 = 𝑥2−2𝑥𝑦+3𝑦2. The
𝑥𝑦-plane is horizontal, and gravity pulls in the −�̂� direction. Hence, the gravitational potential energy is
𝑈(𝑥, 𝑦) = 𝑥2 − 2𝑥𝑦 + 3𝑦2 (with 𝑥 and 𝑦 measured in metres and 𝑈 measured in units of 𝑚𝑔). Suppose
that other mysterious forces are at work on the ball, such that its trajectory is confined to the closed curve
𝑉(𝑥, 𝑦) = 𝑥2 − (2∕3)𝑥𝑦 + 𝑦2 = 1. We would like to find the two points of locally minimum gravitational
potential energy (consistent with the constraint) at which the ball could come to rest.
It can be helpful to visualize the problem:

U[x_, y_] := x^2 - 2 x*y + 3 y^2;
P1 = ContourPlot[U[x, y], {x, -2, 2}, {y, -2, 2}, Contours -> {0.1, 0.2, 0.5, 1.0, 2.0,

5.0, 10.0, 20.0}, PlotLegends -> Automatic];
V[x_, y_] := x^2 - (2/3) x y + y^2
P2 = ContourPlot[V[x, y] == 1, {x, -2, 2}, {y, -2, 2}, ContourStyle -> {Directive[White,

Thick, Dashed]}];
Show[P1, P2]
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(a) Let’s group the horizontal coordinates into a row vector 𝑟𝑇 = (𝑥 𝑦) and reexpress the gravitational
potential energy (a quadratic form) as 𝑈(𝑟) = 𝑟𝑇𝐴𝑟. What are the elements of the matrix 𝐴? The
matrix is not unique, but you will find it convenient to choose a matrix 𝐴 that is symmetric.

(b) Now define a function
𝐿(𝑟, 𝜆) = 𝑟𝑇𝐴𝑟 − 𝜆(𝑟𝑇𝐵𝑟 − 1)

in which the constraint has been added as a Lagrange multiplier term. What are the elements of 𝐵?
I encourage you to chose 𝐵 symmetric also.

(c) Show explicitly that enforcing stationarity, viz. 𝜕𝐿∕𝜕𝑟𝑘 = 𝜕𝐿∕𝜕𝜆 = 0, leads to (𝐴+𝐴𝑇)𝑟 = 𝜆(𝐵+𝐵𝑇)𝑟
and 𝑟𝑇𝐵𝑟 = 1. Provided that 𝐴 and 𝐵 are symmetric, this is just the generalized eigenvalue problem
𝐴𝑟 = 𝜆𝐵𝑟 with a normalization condition.

(d) Find the two independent eigenvalue/eigenvector pairs, (𝜆1, 𝑟(1)) and (𝜆2, 𝑟(2)). Be sure that the 𝑟(𝑘)
vectors have been properly rescaled to satisfy the constraint.

(e) Show that the gravitational energy values at the two locally stable points are 3 and 3∕4.
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You may want to check your answer against the results of this Mathematica code listing:

r = {x, y}
A = {{1, -1}, {-1, 3}}; MatrixForm[A]
Expand[r . A . r] == U[x, y]
B = {{1, -1/3}, {-1/3, 1}}; MatrixForm[B]
Expand[r.B.r] == V[x, y]
sol = Eigensystem[{A, B}]
Eigensystem[Inverse[B].A] == sol
eval = First[sol]
evec = Last[sol]
n1 = evec[[1]].B.evec[[1]]
ev1 = evec[[1]]/Sqrt[n1]
n2 = evec[[2]].B.evec[[2]]
ev2 = evec[[2]]/Sqrt[n2]
ev1.B.ev1
ev2.B.ev2
ev1.A.ev1
ev2.A.ev2
Show[P1, P2, ListPlot[{ev1, ev2}, PlotStyle -> {Red, PointSize[Large]}]]

3. A particular quantum Hamiltonian has the following matrix representation, which involves two real-
valued elements, 𝜀1 and 𝜀2, and one complex-valued element, ∆, all having units of energy:

𝐻 = (𝜀1 ∆∗
∆ 𝜀2

) .

(a) Using the notation ∆1 = Re∆ and ∆2 = Im∆, rewrite the Hamiltonian in terms of the 2 × 2 identity
matrix, 𝐼, and the three Pauli matrices, 𝜎𝑥, 𝜎𝑦 , and 𝜎𝑧:

𝐻 = 1
2(𝜀1 + 𝜀2)𝐼 +

1
2(𝜀1 − 𝜀2)𝜎𝑧 + ∆1𝜎𝑥 + ∆2𝜎𝑦 .

Complete this problem by hand, but also verify thatMathematica can carry out the same decompo-
sition algorithmically:

H = { {Subscript[\[Epsilon], 1], \[CapitalDelta]\[Conjugate]}, {\[CapitalDelta],
Subscript[\[Epsilon], 2]} };

MatrixForm[H]
basis = {IdentityMatrix[2], Splice[PauliMatrix @ Range[3]]};
MatrixForm /@ basis
Tr[basis[[#]].H]/2 & /@ Range[4]
FullSimplify[(Tr /@ (basis.H/2)).basis] // MatrixForm
Assuming[

Subscript[\[CapitalDelta], 1] \[Element] Reals &&
Subscript[\[CapitalDelta], 2] \[Element] Reals, Simplify /@
Refine[

(Tr /@ (basis . H/2)) /. \[CapitalDelta] -> Subscript[\[CapitalDelta], 1]
+ I Subscript[\[CapitalDelta], 2]

].{\[DoubleStruckOne], Subscript[\[Sigma], x], Subscript[\[Sigma], y],
Subscript[\[Sigma], z]}

]
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(b) Show that quantum evolution operator associated with𝐻 has the form

𝑒−𝑖𝑡𝐻∕ℏ = 𝑒−𝑖𝜔1𝑡
[
𝐼 cos𝜔2𝑡 −

𝑖𝑡
ℏ

(1
2(𝜀1 − 𝜀2)𝜎𝑧 + ∆1𝜎𝑥 + ∆2𝜎𝑦

)
sinc𝜔2𝑡

]
,

where the angular frequencies are defined as

𝜔1 = (𝜀1 + 𝜀2)∕2ℏ and 𝜔2 =
1
ℏ

√
∆21 + ∆22 +

1
4(𝜀1 − 𝜀2)2.

(c) Consider the special case in which 𝜀1 = 𝜀2 (the two energy levels coincide) and ∆ = ∆1 > 0 is purely
real and positive. (i) Show that if the system is prepared in the state

𝜓(0) = (10)

at time zero then the wave function at all subsequent times is given by

𝜓(𝑡) = 𝑒−𝑖𝑡𝐻∕ℏ𝜓(0) = 𝑒−𝑖𝜀1𝑡∕ℏ ( cos(𝑡∆1∕ℏ)
−𝑖 sin(𝑡∆1∕ℏ)

) .

(ii) Verify that 𝜓†𝜓 = 1 ∀𝑡 and that the probabilities of measuring the system in levels 1 and 2 are

𝑝1(𝑡) = 𝜓† (1 0
0 0)𝜓 = cos2

( 𝑡∆1
ℏ

)
and 𝑝2(𝑡) = 𝜓† (0 0

0 1)𝜓 = sin2
( 𝑡∆1
ℏ

)
.
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