
Physics 651: Assignment 2
(to be submitted by Thursday, September 19, 2024)

I invite you to attempt Assignment 2 and to turn in your work for Questions 1–4. Any hand-written deriva-
tions should be submitted to me in hard copy. Any computational results should be collected in a single
WolframNotebook and sent as an attachment to kbeach@olemiss.edu. Please follow the naming conven-
tion Phys651-A2-webid.nb, and be sure to include the subject line Phys651-Fall2024-webid Assignment 2
Submission.

1. Given a set of 2𝑁 Grassman numbers {𝜃1, 𝜃2,… , 𝜃𝑁 , 𝜂1, 𝜂2,… , 𝜂𝑁} defined over the reals, we would like to
evaluate integrals of the form

∫𝐷(𝜃, 𝜂) 𝑒𝜃𝑇𝐴𝜂 =∫𝑑𝜂1⋯𝑑𝜂𝑁 𝑑𝜃𝑁⋯𝑑𝜃1 exp
(∑

𝑖,𝑗
𝜃𝑖𝐴𝑖,𝑗𝜂𝑗

)
,

where the indices 𝑖, 𝑗 in the sum run over 1, 2,… , 𝑁. We can think of 𝐴 as an𝑁 ×𝑁 matrix of real-valued
elements. Recall that such Grassman numbers obey

𝜃𝑖𝜃𝑗 = (𝛿𝑖,𝑗 − 1)𝜃𝑗𝜃𝑖 , 𝜂𝑖𝜂𝑗 = (𝛿𝑖,𝑗 − 1)𝜂𝑗𝜂𝑖 , 𝜃𝑖𝜂𝑗 = −𝜂𝑗𝜃𝑖

and that they support a unified integration/differential rule given by

∫𝑑𝜃 𝜃𝛼 = 𝑑
𝑑𝜃

𝜃𝛼 =∫𝑑𝜂 𝜂𝛼 = 𝑑
𝑑𝜂
𝜂𝛼 = 𝛼 for (𝛼 = 0, 1) and ∫𝑑𝜂 𝜃 =∫𝑑𝜃 𝜂 = 0.

(a) For the 𝑁 = 2 case, show explicitly that evaluation of the integral

∫𝑑𝜂1 𝑑𝜂2 𝑑𝜃2 𝑑𝜃1 exp[
(
𝜃1 𝜃2

)
(𝐴1,1 𝐴1,2
𝐴2,1 𝐴2,2

) (𝜂1𝜂2
)]

yields 𝐴1,1𝐴2,2 − 𝐴1,2𝐴2,1. Proceed by expanding exp(𝑥) = 1 + 𝑥 + 𝑥2∕2 + 𝑥3∕6 +⋯ in series.
(b) Evaluate the comparable expression for 𝑁 = 3.
(c) Argue convincingly (in words, no explicit calculation is required) that the generic result is just det𝐴.

The followingMathematica code may help to clarify your thinking.

buildA[n_] := Table[Subscript[A,i,j],{j,1,n},{i,1,n}]
buildA[2] // MatrixForm
buildA[3] // MatrixForm
Det[buildA[#]] & /@ Range[2, 4] // TableForm
ExplicitDet[M_, n_] := Total[Times @@@ Table[If[j == 1, Signature[#[[i]]], 1]

Subscript[M, j, #[[i]][[j]]], {i, 1, n!}, {j, 1, n}] &[Permutations[Range[n]]]]
ExplicitDet[A, 2] == Det[buildA[2]]
ExplicitDet[A, 3] == Det[buildA[3]]
ExplicitDet[A, 4] == Det[buildA[4]]
And @@ Table[Expand[ExplicitDet[A, n]] == Expand[Det[buildA[n]]], {n, 2, 6}]

(d) Since the Grassman variables obey an “exclusion principle” (viz., 𝜃2𝑖 = 𝜂2𝑖 = 0) and pick up a sign un-
der “particle exchange” (viz., 𝜃1𝜃2 = −𝜃2𝜃1), we can interpret the Grassman algebra as a description
of fermionic degrees of freedom. Themany-bodywave function for a system of𝑁 (spinless) fermions
is Ψ(𝐫1, 𝐫2,… , 𝐫𝑁) = (𝑁!)−1∕2 det𝐴, where 𝐴𝑖,𝑗 = 𝜓𝑗(𝐫𝑖) is the single-particle wave function for the
𝑖th particle in the 𝑗th level. Return to the 𝑁 = 2 case, and consider what happens (i) if 𝐫1 and 𝐫2
take arbitrary values but 𝜓1 = 𝜓2; and (ii) if 𝜓1 ≠ 𝜓2 but 𝐫1 = 𝐫2. Explain what your mathematical
observations mean physically.
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2. A ball tossed straight up into the air travels according to ℎ = 𝑣0𝑡 −
1
2
𝑔𝑡2. Here, 𝑣0 is the initial (𝑡 = 0)

vertical velocity, and 𝑔 is the gravitational acceleration. A set of poorly takenmeasurements (eyeballed by
an observer with a stopwatch against rough height marks on the wall) is given in the table below.

time 𝑡 (s) height ℎ (m)
0.5 8.8
1.0 15.4
1.5 17.5
2.0 20.4
2.5 19.3
3.0 14.4
3.5 9.5

(a) Write out the corresponding linear system of seven equations and two unknowns in matrix format.
(b) Construct the Moore-Penrose pseudoinverse by hand.
(c) Give best estimates (in the least squares sense) of the initial velocity (𝑣0) and the gravitational accel-

eration (𝑔). Check your answer against thisMathematica code.

tlist = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5}
hlist = {8.8, 15.4, 17.5, 20.4, 19.3, 14.4, 9.5};
x[t_] = v0 t - (g/2) t^2
xlist = x /@ tlist
row1 = xlist /. {v0 -> 1, g -> 0}
row2 = xlist /. {v0 -> 0, g -> 1}
MT = {row1, row2}
M = Transpose[MT]
M // MatrixForm
M . {v0, g} == xlist
hlist // MatrixForm
PseudoInverse[M] // MatrixForm
PseudoInverse[M] == Inverse[MT . M] . MT
PseudoInverse[M] . hlist

(d) The observer has reported no “error bars” on the height measurements. Still, there are various ways
(bootstrap methods especially) to estimate the uncertainty on the pseudoinverse values of 𝑣0 and 𝑔,
just based on the data given. One possibility is so-called jackknife resampling. Using that approach,
one would compute the pseudoinverse solution 7 times on all possible 6-entry data sets produced
by removing one row from the data table. This yields 7 estimates of 𝑣0 and 𝑔, and the spread in
those values can be interpreted as a fitting uncertainty. WriteMathematica code that carries out the
jackknife procedure. You may want to make use of the Mean and StandardDeviation functions.

(e) Make a plot that puts the jackknife fits through data points.

3. The Pauli matrices are generators of the SU(2) algebra that governs spin-half quantum angular momenta.
They are defined as

𝜎𝑥 = (0 1
1 0) , 𝜎𝑦 = (0 −𝑖

𝑖 0 ) , 𝜎𝑧 = (1 0
0 −1) .

Here, 𝑖 is the imaginary number satisfying 𝑖2 = −1.

(a) Compute the trace and determinant of each Pauli matrix by hand. Confirm your results by compar-
ing toMathematica’s.

Table[{Subscript[\[Sigma], i], "=", MatrixForm[PauliMatrix[i]], " det =",
Det[PauliMatrix[i]], " tr =", Tr[PauliMatrix[i]]}, {i, 1, 3}] // Grid
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(b) Show that 𝜎2𝑥 = 𝜎2𝑦 = 𝜎2𝑧 = −𝑖𝜎𝑥𝜎𝑦𝜎𝑧 = (1 0
0 1) = 𝐼 (the 2 × 2 identity matrix). Again, confirm

your results:

MatrixForm /@ {PauliMatrix[1].PauliMatrix[1], MatrixPower[PauliMatrix[2], 2],
MatrixPower[PauliMatrix[3], 2], -I PauliMatrix[1].PauliMatrix[2].PauliMatrix[3],
IdentityMatrix[2]}

(c) Prove the anticommutation rule
{
𝜎𝑎, 𝜎𝑏

}
= 𝜎𝑎𝜎𝑏 + 𝜎𝑏𝜎𝑎 = 2𝐼𝛿𝑎,𝑏.

Here, 𝑎 and 𝑏 range over the indices 𝑥, 𝑦, 𝑧, and 𝛿 is the Kronecker delta symbol.

Table[MatrixForm /@ Table[PauliMatrix[a].PauliMatrix[b]
+ PauliMatrix[b].PauliMatrix[a], {b, 1, 3}], {a, 1, 3}] // TableForm

Table[MatrixForm[KroneckerDelta[a, b] 2 IdentityMatrix[2]], {b, 1, 3},
{a, 1, 3}] // TableForm

(d) Prove the commutation rule
[
𝜎𝑎, 𝜎𝑏

]
= 𝜎𝑎𝜎𝑏 − 𝜎𝑏𝜎𝑎 = 2𝑖𝜖𝑎,𝑏,𝑐𝜎𝑐.

It is understood that the repeated 𝑐 implies a summation over 𝑥, 𝑦, 𝑧; 𝜖 is the Levi-Civita symbol.
Note that, inMathematica, 𝜖𝑎,𝑏,𝑐 = 0,±1 coincides with Signature[{a, b, c}]:

Table[MatrixForm /@ Table[PauliMatrix[a].PauliMatrix[b] -
PauliMatrix[b].PauliMatrix[a], {b, 1, 3}], {a, 1, 3}] // TableForm

Table[MatrixForm /@ Table[2 I Sum[Signature[{a, b, c}] PauliMatrix[c], {c, 1, 3}], {b,
1, 3}], {a, 1, 3}] // TableForm

(e) We’ll let 𝐧 represent an arbitrary vector in ℝ3 and adopt the notation 𝛔 to represent the Cartesian
triple of matrices (𝜎𝑥, 𝜎𝑦 , 𝜎𝑧). Prove that

𝑒𝑖𝐧⋅𝛔 = 𝐼 cos 𝜃 + 𝑖(𝐧̂ ⋅ 𝛔) sin 𝜃,

where 𝜃 = |𝐧| and 𝐧̂ = 𝐧∕𝜃 is a unit vector. The easiest approach is to apply the standard Taylor
series expansions for the exponential, cosine, and sine functions.
You may want to remind yourself of these results:

Sum[(-1)^k \[Theta]^k/k!, {k, 0, \[Infinity]}]
Sum[(-1)^k \[Theta]^(2 k)/((2 k)!), {k, 0, \[Infinity]}]
Sum[(-1)^k \[Theta]^(2 k + 1)/((2 k + 1)!), {k, 0, \[Infinity]}]

Here is a more elegantly typeset version of the last two lines of code.

c = HoldForm[Sum[(-1)^k \[Theta]^(2 k)/((2 k)!), {k, 0, \[Infinity]}]]
s = Sum[(-1)^k \[Theta]^(2 k + 1)/((2 k + 1)!), {k, 0, \[Infinity]}] // HoldForm
Row[{c, " \[LongEqual] ", ReleaseHold[c]}] // TraditionalForm
Row[{s, " \[LongEqual] ", ReleaseHold[s]}] // TraditionalForm

You may also want to make use of the fact that a unit vector dotted with itself is one (𝐧̂ ⋅ 𝐧̂ = 1, by
definition) and that any vector crossed with itself vanishes (𝐮 × 𝐮 = 0).
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4. Consider the following five configurations in which six sites (alternately coloured black andwhite around
the hexagon) are grouped into oppositely coloured pairs:

|1⟩ = |2⟩ =

|4⟩ =|3⟩ = |5⟩ =

(This is a reasonable basis choice for the valence electrons in a benenze ring; in that case, each bond
represents an entangled pair of the form (|↑↓⟩ − |↓↑⟩)∕

√
2.) The overlap 𝑆 is the matrix whose elements

are the inner products 𝑆𝑖,𝑗 = ⟨𝑖|𝑗⟩ = 2𝐿𝑖,𝑗−3. The overlap values are controlled by the number (𝐿𝑖,𝑗) of
closed loops that are formed when configurations |𝑖⟩ and |𝑗⟩ are superimposed.

(a) Determine the matrix 𝑆, its trace (tr 𝑆), determinant (det 𝑆), and inverse (𝑆−1). I encourage you
to make your life easier by seeking computer assistance. You are welcome to determine the loop
counts by hand—since that part of the computation is trickiest—but everything else can be easily
automated.
The elements 𝐿𝑖,𝑗 correspond to L[[i,j]] inMathematica. You should find that the nested array of
elements looks like

L = {{3, 1, 2, 2, 2}, {1, 3, 2, 2, 2}, ..., {2, 2, 1, 1, 3}}

(b) This basis is not orthonormal. Show that the resolution of unity is 𝟙̂ =
∑5

𝑖=1
∑5

𝑗=1|𝑖⟩𝑆
−1
𝑖,𝑗 ⟨𝑗|. Specifi-

cally, prove (i) that 𝟙̂|𝑘⟩ = |𝑘⟩ for each of 𝑘 = 1, 2, 3, 4, 5 and (ii) that 𝟙̂2 = 𝟙̂.
(c) The pairing rule (each black connecting to a white) actually supports 3! = 6 possible configurations.

(i) Draw themissing sixth state, call it |6⟩, and argue that it is extraneous. (ii) Carry out the projection
step |6′⟩ = 𝟙̂|6⟩ to resolve |6⟩ as a linear combination of the other five states. (iii) Check that ⟨6|6′⟩ =
⟨6|𝟙̂|6⟩ = 1 to verify that no weight has been lost.

(d) Show that orthogonalization of this basis amounts to finding amatrix𝑀 that satisfies𝑀𝑇𝑀 = 𝑆. This
is sometimes loosely referred to as the square root of thematrix 𝑆 but is more properly understood as
a positive-definite decomposition or Cholesky decompostition. Such a decomposition is not unique.

(e) Take as a starting point two states

|𝑢1⟩ =
√

2
5
(
|1⟩ + |2⟩

)
and |𝑢2⟩ =

√
2
3
(
|1⟩ − |2⟩

)

that have been constructed to satisfy ⟨𝑢1|𝑢1⟩ = ⟨𝑢2|𝑢2⟩ = 1 and ⟨𝑢1|𝑢2⟩ = 0. Perform one step in the
Gram-Schmidt process to generate the next state,

|𝑢3⟩ = − 2
√
15

(
|1⟩ + |2⟩

)
+
√

5
3 |3⟩.

Confirm that the collection of kets {|𝑢1⟩, |𝑢2⟩, |𝑢3⟩} constitutes an orthonormal (sub)set. In principle,
you could continue with further Gram-Schmidt steps to generate |𝑢4⟩ and |𝑢5⟩, but please don’t!
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