
Physics 651: Assignment 0
(to be submitted by Tuesday, September 3, 2024, but ungraded)

I invite you to attempt Assignment 0 and to turn in your work for Questions 4, 6, and 8. Your submis-
sion should take the form of a single Wolfram Notebook, sent as an attachment to kbeach@olemiss.
edu. Please follow the naming convention Phys651-A0-webid.nb, and be sure to include the subject line
Phys651-Fall2024-webid Assignment 0 Submission. You arewelcome to annotate yourNotebook inwhat-
ever way you thinkwould be helpful tome; I suggest including a Format > Style > Sectionmarker to indicate
the start of each question and using the Format > Style > Text mode to add other descriptive comments.

1. Installation instructions forMathematica are provided on the class website.

2. Start up theMathematica front-end application. This is the interface that sits atop theMathematicaKernel,
which is the underlying computational engine.

3. Open a new Notebook.

4. Try creating some simple graphics with the Plot function. Note that pressing enter or return on your
keyboard will produce just a bare line-feed/carriage-return. To getMathematica to interpret and execute
a line of code, you will have to type shift + return .

5. If you are completely new to this, have a look at the videosGetting Started inMathematica and 2DPlotting.
There is also a gallery of screencasts on the Wolfram website and a large collection of course videos at
Wolfram U.

kbeach@olemiss.edu
kbeach@olemiss.edu
https://www.phy.olemiss.edu/~kbeach/courses/fall2024/phys651/syllabus/#software
https://youtu.be/mXFDAz3S9Uk
https://youtu.be/j-utznrXmcY
https://www.wolfram.com/broadcast/
https://www.wolfram.com/wolfram-u/courses/catalog/


6. Note that while Mathematica supports a more conventional procedural style (what you’re used to in
python, C++, etc), it’s really designed for so-called functional programming. This summary page might
be useful for you. Functional programming is powerful, expressive, and compact. It’s sometimes hard to
parse if you’re not used to it. For instance, the following produces the bifurcation diagram of the logistic
map:

Logistic[x_, r_] := r x (1 - x)
LogisticLast[x0_, r_, iters_] := Nest[Logistic[#, r] &, x0, iters]
ListPlot[Table[LogisticLast[k/7.0, #, 1000] & /@ (Range[400]/100.0), {k, 1, 6}]]

In a few weeks, this will look much less mysterious!

7. Here we plot two polynomials 𝑓(𝑥) and 𝑔(𝑥), each of order 3, that have roots at 𝑥 = 2, 5, 6 and 𝑥 = 2, 3, 6,
respectively.

f[x_] := (x - 2) (x - 5) (x - 6);
g[x_] := (x - 2) (x - 3) (x - 6);
Plot[{f[x], g[x]}, {x, 1, 8}, Frame -> True,
FrameLabel -> {”Independent variable,” x, ”Dependent variable”},
LabelStyle -> Directive[Larger, Darker[Green, 0.8]],
PlotLabel -> ”Roots of two functions compared”,
PlotLabels -> Placed[Automatic, Right]]

Observe that function arguments inMathematica are enclosed in (square) brackets rather than (rounded)
parentheses, as in conventional mathematical notation. Lists and sets are delineated by (curly) braces.
The trailing underscore on a variable is necessary when defining a pattern; e.g., f[x_] indicates that a
value for x will be provided when the function f is called, according to what appears on the right-hand-
side of the := assignment operator. Also, it suffices to write (x - 2)(x - 5)(x - 6) for the product of
monomials; we don’t need a connective asterisk, i.e., (x - 2)*(x - 5)*(x - 6), as in most other pro-
gramming languages.

8. Consider the 4th order polynomials 𝑝(𝑥) =
∏4

𝑗=1(𝑥 − 2𝑗 + 1) and 𝑞(𝑥) =
∏4

𝑗=1(𝑥 − 2𝑗), having roots at
𝑥 = 1, 3, 5, 7 and 𝑥 = 2, 4, 6, 8. Make a plot showing the two functions and their product (drawn as three
distinct lines, properly labelled). Then compute the integrals

∫
9

0
𝑑𝑥 𝑝(𝑥), ∫

9

0
𝑑𝑥 𝑞(𝑥), ∫

9

0
𝑑𝑥 𝑝(𝑥)𝑞(𝑥), and ∫

9

0
𝑑𝑥

𝑝(𝑥)𝑞(𝑥)
∏8

𝑗=1(𝑥 − 𝑗)
.

You might find it helpful to read the instructions brought up by the prompts ?Integrate and ?Product.

https://reference.wolfram.com/language/guide/FunctionalProgramming.html
https://en.wikipedia.org/wiki/Logistic_map
https://en.wikipedia.org/wiki/Logistic_map

