Physics 651: Exercise 4

(not for submission)
We follow the Fourier transform convention used in the Physical Mathematics textbook:

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \tilde{f}(k) e^{i k x}=\mathcal{F}^{-1}[\tilde{f}(k)](x) \\
& \tilde{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x f(x) e^{-i k x}=\mathcal{F}[f(x)](k)
\end{aligned}
$$

The default convention in Mathematica is almost the same, but the signs in the arguments of the exponentials are swapped ($e^{i k x} \leftrightarrow e^{-i k x}$). We can use the FourierParameters option to modify the convention to match that of the textbook. For convenience, let's define shortcut functions:

```
FT[f_, x_, k_] := FourierTransform[f, x, k, FourierParameters -> {0, -1}]
IFT[ff_, k_, x_] := InverseFourierTransform[ff, k, x, FourierParameters -> {0, -1}]
```

Complete the following questions using any combination of analytical and computer-assisted (Mathematica) solution methods.

1. Suppose that $A(\xi), B(\xi)$, and $C(\xi)$ are functions of ξ that obey $A B=C$. Suppose further that A and C are known and that we need to solve for B. Prove that the most general solution is

$$
B=\frac{C}{A}+h \delta(A)
$$

where $h(\xi)$ is an arbitrary function.
2. Consider a scalar field $\phi(x, t)$, with one space and one time argument, governed by the partial differential equation

$$
\partial_{t}^{2} \phi+2 \gamma \partial_{t} \phi-c^{2} \partial_{x}^{2} \phi=f
$$

The additional symbols denote the forcing function $f(x, t)$, damping coefficient γ, and speed c. (This is just a twist on the wave equation example we did in class.) Substitute the Fourier representation

$$
\phi(x, t)=\int_{-\infty}^{\infty} \frac{d k}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{d \omega}{\sqrt{2 \pi}} \tilde{\phi}(k, \omega), e^{i(k x-\omega t)}
$$

and then show that $\tilde{\phi}$ must satisfy

$$
-\left(\omega^{2}+2 i \gamma \omega-c^{2} k^{2}\right) \tilde{\phi}(k, \omega)=\tilde{f}(k, \omega) .
$$

3. Argue that the most general solution is

$$
\tilde{\phi}(k, \omega)=\tilde{h}(k, \omega) \delta(P(\omega))-\frac{\tilde{f}(k, \omega)}{P(\omega)}
$$

where $P(\omega)=\omega^{2}+2 i \gamma \omega-c^{2} k^{2}$ is a quadratic polynomial in the frequency variable. (Hint: Think back to what you proved in question 1.)
4. Solve for the roots of $P(\omega)$:

$$
\omega_{ \pm}=-i \gamma \pm \sqrt{c^{2} k^{2}-\gamma^{2}} \equiv-i \gamma \pm \omega_{k}
$$

Prove that the most general solution in space and time (having inverse transformed $k, \omega \rightarrow x, t$) is of the form

$$
\phi(x, t)=e^{-\gamma t} \int_{-\infty}^{\infty} d k e^{i k x}\left(A e^{-i \omega_{k} t}+B e^{i \omega_{k} t}\right)-\frac{1}{2 \pi} \int_{-\infty}^{\infty} d k \int_{-\infty}^{\infty} d \omega \frac{\tilde{f}(k, \omega) e^{i(k x-\omega t)}}{\omega^{2}+2 i \gamma \omega-c^{2} k^{2}}
$$

5. Impose the forcing function $f(x, t)=\exp \left(-x^{2} / 2 \xi^{2}\right) \cos \Omega t$ and take the long time limit $t \gg \gamma$. (We have introduced two constants: ξ is a length, and Ω is a frequency.) Show that the asymptotic behaviour of the field is given by

$$
\phi(x, t)=-\frac{\xi}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d k \frac{\left(\Omega^{2}-c^{2} k^{2}\right) \cos \Omega t-2 \gamma \Omega \sin \Omega t}{\left(\Omega^{2}-c^{2} k^{2}\right)^{2}+4 \gamma^{2} \Omega^{2}}(\cos k x) e^{-\frac{1}{2} k^{2} \xi^{2}}
$$

6. Suppose that $\left.\phi(x, t)\right|_{t=0}=p(x)$ and $\left.\partial_{t} \phi(x, t)\right|_{t=0}=q(x)$ are known initial conditions and that the forcing function is also known and nonzero. Roughly sketch out how you would determine $\phi(x, t)$ for all future $t>0$. (If you're feeling adventurous, you might want to select a specific form for each of $p(x)$ and $q(x)$ and plot up time snapshots of the field's time evolution in Mathematica. One straightforward choice is a plucked string: $p(x)$ gaussian and $q(x)=0$.)
