Physics 651: Exercise 3

(not for submission)

1. The determinant of an $n \times n$ matrix A is given by

$$
\operatorname{det} A=\sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \cdots \sum_{i_{n}=1}^{n} \epsilon_{i_{1}, i_{2}, \ldots, i_{n}} A_{1, i_{1}} A_{2, i_{2}} \cdots A_{n, i_{n}} \text {, }
$$

where ϵ is the Levi-Civita symbol. For the $n=4$ case, only one of the following terms appears in the sum. Which one?
(a) $+A_{1,1} A_{2,2} A_{3,4} A_{4,3}$
(b) $-A_{1,3} A_{2,1} A_{3,4} A_{4,2}$
(c) $+A_{1,1} A_{2,2} A_{3,1} A_{4,2}$
(d) $-A_{1,3} A_{2,3} A_{3,3} A_{4,3}$
2. The set of vectors $\left\{\mathbf{v}_{1}=\hat{x}+2 \hat{y}, \mathbf{v}_{2}=\hat{x}+\hat{y}+\hat{z}, \mathbf{v}_{3}=-\hat{y}+3 \hat{z}\right\}$ spans \mathbb{R}^{3} but does not constitute an orthonormal set. Normalize the vectors and apply the Gram-Schmidt procedure. Once you've generated the set

$$
\left\{\mathbf{u}_{1}=\frac{1}{\sqrt{5}}(\hat{x}+2 \hat{y}), \mathbf{u}_{2}=\cdots, \mathbf{u}_{3}=\cdots\right\}
$$

verify explicitly that $\mathbf{u}_{i} \cdot \mathbf{u}_{j}=\delta_{i, j}$ for all $i \leq j$. Try all of this by hand, but then check your answers against the output of this Mathematica code:

```
u = Orthogonalize [{{1, 2, 0}, {1, 1, 1}, {0, -1, 3}}]
Table[u[[i]].u[[j]], {i, 1, 3}, {j, 1, 3}] // MatrixForm
```

3. Consider an arbitrary 2×2 matrix, A.
(a) Express its characteristic polynomial, $\mathcal{P}_{A}(\lambda)=\operatorname{det}(\lambda I-A)$, in terms of $\operatorname{tr} A$ and $\operatorname{det} A$.
(b) Show that A has two eigenvalues,

$$
\lambda_{ \pm}=\frac{1}{2} \operatorname{tr} A \pm \sqrt{\frac{1}{4}(\operatorname{tr} A)^{2}-\operatorname{det} A}
$$

Here is an example of how to automate the calculations in 3(a) and 3(b):

```
A = {{a, b}, {c, d}}
thisTrA = Tr [A]
thisDetA = Det[A]
PP[x_] = Collect[CharacteristicPolynomial[A, x], -x]
P[x_] = PP[x] /. thisDetA -> DetA /. thisTrA -> TrA
Roots[P[x] == 0, x]
soln = Solve[P[x] == 0, x]
{SubPlus[\[Lambda]], SubMinus[\[Lambda]]} = x /. soln
```

4. The linear operator \hat{A} is expressed as $\sum_{i, j}|i\rangle A_{i, j}\langle j|$ in some generic basis and as $\sum_{k}\left|\phi_{k}\right\rangle \lambda_{k}\left\langle\phi_{k}\right|$ in the basis of eigenstates (which satisfy $\hat{A}\left|\phi_{k}\right\rangle=\lambda_{k}\left|\phi_{k}\right\rangle$). We assume that A is hermitian and that both $\{|i\rangle\}$ and $\left\{\left|\phi_{k}\right\rangle\right\}$ are orthonormal sets. Which of the following statements is incorrect?
(a) $U_{j, k}=\left\langle j \mid \phi_{k}\right\rangle$ describes the unitary matrix that transforms between the two basis sets.
(b) The eigenstate basis diagonalizes A with the eigenvalues $\left\{\lambda_{k}\right\}$ all taking real values.
(c) The k th eigenvalue can be extracted from $\lambda_{k}=\left(U^{\dagger} A U\right)_{k, k}$
(d) The i th eigenvalue can be extracted from $\lambda_{i}=\langle i| \hat{A}|i\rangle$
5. The column vectors

$$
v^{(1)}=\binom{1}{1} \text { and } v^{(2)}=\binom{-1}{3}
$$

are eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)
$$

(a) Find the corresponding eigenvalues, λ_{1} and λ_{2}.
(b) Prove that $v^{(1)}$ and $v^{(2)}$ are linearly independent.
(c) Compute the matrix elements $S_{a, b}=v^{(a) T} v^{(b)}=\sum_{k} v_{k}^{(a)} v_{k}^{(b)}$ and explain why $S_{a, b} \neq \delta_{a, b}$.
(d) Find the transformation matrix V such that

$$
A=V\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) V^{-1}
$$

(e) Compute $\exp A$
6. The column vectors

$$
v^{(1)}=\binom{1+\sqrt{2}}{-1} \text { and } v^{(2)}=\binom{1-\sqrt{2}}{-1}
$$

are eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 0
\end{array}\right)
$$

(a) Find the corresponding eigenvalues, λ_{1} and λ_{2}.
(b) Prove that $v^{(1)}$ and $v^{(2)}$ are linearly independent.
(c) Compute the matrix elements $S_{a, b}=v^{(a) T} v^{(b)}=\sum_{k} v_{k}^{(a)} v_{k}^{(b)}$ and explain why $S_{a, b} \neq \delta_{a, b}$. What can you do to $v^{(1)}$ and $v^{(2)}$ to ensure that their overlap matrix elements give exactly the Kronecker delta?
(d) Find the transformation matrix V such that

$$
A=V\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) V^{\dagger}
$$

(e) Show that

$$
\sin (\theta A)=\left(\begin{array}{cc}
\sin 2 \theta & -\sin \theta \\
-\sin \theta & 0
\end{array}\right)
$$

Questions 6(a)-(e) can be automated as follows:

```
A = {{2, -1}, {-1, 0}}
{{e1, e2}, {v1, v2}} = Eigensystem[A]
Det[{v1, v2}]
S = Simplify[{{v1.v1, v1.v2}, {v2.v1, v2.v2}}]
v1 = v1/Sqrt[v1.v1]
v2 = Normalize[v2]
S = Simplify[{{v1 . v1, v1 . v2}, {v2 . v1, v2 . v2}}]
V = Transpose[{v1, v2}]
V // MatrixForm
Simplify[Inverse[V]] // MatrixForm
Simplify[V.{{e1, 0}, {0, e2}}.Simplify[Inverse[V]]]
Sin[\[Theta] A]
```

7. We want to extremize the function $f(x, y)=x y^{3}$ simultaneously on the two curves $3 x^{4}+y^{4}=1$ and $x^{4}+3 y^{4}=1$. Which of the following is a correct statement?
(a) The minimum value is $-1 / 4$ and the maximum value is $+1 / 4$.
(b) The minimum value is 0 and the maximum value is $+1 / 2$.
(c) The minimum value is $-1 / 2$ and the maximum value is unbounded.
(d) The minimum value is unbounded and the maximum value is $1 / 2$.
8. Let's work with the vector field

$$
\mathbf{F}=\mathbf{F}(\mathbf{r})=\mathbf{F}(x, y, z)=\frac{4 x^{3} \hat{x}-4 y^{3} \hat{y}+2 z \hat{z}}{\left(x^{4}-y^{4}+z^{2}\right)^{3}}
$$

expressed in rectangular coordinates.
(a) Consider the line integral along a contour C that lies in the $z=2$ plane and that is the bounding box to the square formed by the intersection of the lines $|x|=1$ and $|y|=1$. Substitute this specific contour parameterization into

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \frac{4 x^{3} d x-4 y^{3} d y+2 z d z}{\left(x^{4}-y^{4}+z^{2}\right)^{3}}
$$

Show explicitly that the integral evaluates to zero.
(b) Find a scalar field $V(\mathbf{r})$ such that $\mathbf{F}=-\nabla V$.
(c) The fundamental theorem for line integrals states that

$$
\int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \nabla f \cdot d \mathbf{r}=f\left(\mathbf{r}_{2}\right)-f\left(\mathbf{r}_{1}\right)
$$

regardless of the path taken from \mathbf{r}_{1} to \mathbf{r}_{2}. Use the fundamental theorem for line integrals to argue that this integral from part (a) must vanish:

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=0
$$

