Physics 651: Exercise 2

(not for submission)

- 1. The kets $|u\rangle$, $|v\rangle$, and $|w\rangle$ belong to a vector space that is spanned by the orthonormal basis $\{|b_i\rangle\}$. Let $\hat{P} = \sum_{i,j} |b_i\rangle P_{i,j} \langle b_j|$ and $\hat{Q} = \sum_{i,j} |b_i\rangle Q_{i,j} \langle b_j|$ be linear operators acting on that space. Which of the following expressions is incorrect?
 - (a) $\langle u|\hat{P}|v\rangle^* = \langle v|\hat{P}^\dagger|u\rangle$
 - (b) $(|u\rangle\langle v|)|w\rangle = \langle u|v\rangle|w\rangle$
 - (c) $\langle b_i | \hat{P} \hat{Q} | u \rangle = \sum_{i,k} P_{i,j} Q_{j,k} u_k$
 - (d) $(\hat{P}\hat{Q}|u\rangle)^{\dagger} = \langle u|\hat{Q}^{\dagger}\hat{P}^{\dagger}$
- 2. Let α , β , and γ be complex numbers and $|u\rangle$, $|v\rangle$, and $|w\rangle$ be elements of a complex vector space. Which of the following expressions is correct?
 - (a) $(|u\rangle\langle v|)|w\rangle = \langle v|w\rangle|u\rangle$
 - (b) $\langle u|(|v\rangle\langle w|) = \langle u|v\rangle^*|w\rangle$
 - (c) $(\alpha | u \rangle \otimes | v \rangle \otimes | w \rangle)^{\dagger} = \alpha^* \langle w | \otimes \langle v | \otimes \langle u |$
 - (d) $(\alpha |u\rangle + \beta |v\rangle + \gamma |w\rangle)^{\dagger} = \alpha \langle u| + \beta \langle v| + \gamma \langle w|$
- 3. Associated with a quantum system in its ground state $|\psi\rangle$ is a density operator $\hat{\rho} = |\psi\rangle\langle\psi|$. When expressed in terms of a particular basis $\{|n\rangle\}$, the ground state has component amplitudes $\psi_n = \langle n|\psi\rangle$. For an observable \hat{O} , having matrix elements $\langle m|\hat{O}|n\rangle = O_{m,n}$, the ground state expectation value is

$$\langle \hat{O} \rangle = \frac{\operatorname{tr} \hat{\rho} \hat{O}}{\operatorname{tr} \hat{\rho}}.$$

Show that this is equivalent to

$$\frac{\sum_{m,n} \psi_m^* O_{m,n} \psi_n}{\sum_k |\psi_k|^2}.$$

4. The determinant of a 2×2 matrix A is given by

$$\det A = \sum_{i=1}^{2} \sum_{j=1}^{2} \epsilon_{i,j} A_{1,i} A_{2,j}.$$

What is the correct definition of the alternating symbol?

- (a) $\epsilon_{1,1} = \epsilon_{2,2} = 0$ and $\epsilon_{1,2} = \epsilon_{2,1} = 1$
- (b) $\epsilon_{1,1} = \epsilon_{2,2} = 0$ and $\epsilon_{1,2} = -\epsilon_{2,1} = 1$
- (c) $\epsilon_{1,1} = \epsilon_{2,2} = 1$ and $\epsilon_{1,2} = \epsilon_{2,1} = -1$
- (d) $\epsilon_{1,1} = -\epsilon_{2,2} = 1$ and $\epsilon_{1,2} = \epsilon_{2,1} = 0$

5. The determinant of a 4×4 matrix A is given by

$$\det A = \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \sum_{l=1}^{4} \epsilon_{i,j,k,l} A_{1,i} A_{2,j} A_{3,k} A_{4,l},$$

where $\epsilon_{i,j,k,l}$ is the 4-index Levi-Civita symbol. Which one of the following terms appears in the sum.

- (a) $+A_{1,1}A_{2,2}A_{3,4}A_{4,3}$
- (b) $-A_{1,3}A_{2,1}A_{3,4}A_{4,2}$
- (c) $+A_{1,1}A_{2,2}A_{3,1}A_{4,2}$
- (d) $-A_{1,3}A_{2,3}A_{3,3}A_{4,3}$
- 6. Here, $|u\rangle$ and $|v\rangle$ are elements of a vector space; \hat{A} , \hat{B} , and \hat{C} are linear operators acting on the space; and $\{|i\rangle\}$ constitutes an orthonormal basis for the space. Use the technique of inserting representations of unity, $\hat{1} = \sum_{i} |i\rangle\langle i|$, to prove that

$$\langle u|\hat{A}\hat{B}\hat{C}|v\rangle^* = \langle v|\hat{C}^\dagger\hat{B}^\dagger\hat{A}^\dagger|u\rangle.$$

7. Rotation about the x, y, and z axes (in the right-hand sense about the directions \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3) is implemented by matrices

$$R_1(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}, \ R_2(\theta) = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}, \ R_3(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (a) Show that $\det R_i(\theta) = 1$ for each of i = 1, 2, 3 and for all values of the angle θ .
- (b) Prove that $R_i(-\theta) = R_i(\theta)^T = R_i(\theta)^{-1}$.
- (c) Evaluate these three composite rotations:

$$A = R_1(-\pi/2)R_2(\pi/2)R_1(\pi/2),$$

$$B = R_3(\pi/2)R_2(\pi/4)R_1(\pi/2),$$

$$C = R_1(-\pi/4)R_3(\pi/2)R_1(\theta)R_3(-\pi/2)R_1(\pi/4).$$

In other words, evaluate each of the matrix products to determine the resulting 3×3 matrix.

(d) Prove that A corresponds to a rotation about \mathbf{e}_3 ; B to a rotation about $\mathbf{e}_1 + (1 + \sqrt{2})\mathbf{e}_2 + \mathbf{e}_3$; and C to a rotation about $-\mathbf{e}_2 + \mathbf{e}_3$. To determine the axes of rotation, solve the eigenproblems for $(A + A^T)/2$, $(B + B^T)/2$, and $(C + C^T)/2$. Make use of tr $A = 1 + 2\cos\theta_A = 1$ and tr $B = 1 + 2\cos\theta_B = 1/\sqrt{2}$ to determine the angles of rotation. Evaluate tr $C = 1 + 2\cos\theta$ to confirm that the parameter θ does in fact represent the rotation angle.

```
EVC = Simplify[Eigensystem[(CC + Transpose[CC])/2]]
MemberQ[EVA[[1]], 1]
For[i = 1, i <= 3, ++i, If[EVA[[1]][[i]] == 1, Print[EVA[[2]][[i]]]]]
MemberQ[EVB[[1]], 1]
For[i = 1, i <= 3, ++i, If[EVB[[1]][[i]] == 1, Print[EVB[[2]][[i]]]]]
MemberQ[EVC[[1]], 1]
For[i = 1, i <= 3, ++i, If[EVC[[1]][[i]] == 1, Print[EVC[[2]][[i]]]]]</pre>
```

(e) Reflection across the x = 0 plane is represented by the matrix

$$M = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

This maps every column vector

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ to a reflected vector } \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ z \end{pmatrix}.$$

Use a similarity transformation to determine the matrix $M' = U^{-1}MU$ that reflects across the plane defined by y = -x.