Physics 651: Exercise 2

(not for submission)

1. The kets $|u\rangle,|v\rangle$, and $|w\rangle$ belong to a vector space that is spanned by the orthonormal basis $\left\{\left|b_{i}\right\rangle\right\}$. Let $\hat{P}=\sum_{i, j}\left|b_{i}\right\rangle P_{i, j}\left\langle b_{j}\right|$ and $\hat{Q}=\sum_{i, j}\left|b_{i}\right\rangle Q_{i, j}\left\langle b_{j}\right|$ be linear operators acting on that space. Which of the following expressions is incorrect?
(a) $\langle u| \hat{P}|v\rangle^{*}=\langle v| P^{\dagger}|u\rangle$
(b) $(|u\rangle\langle v|)|w\rangle=\langle u \mid v\rangle|w\rangle$
(c) $\left\langle b_{i}\right| \hat{P} \hat{Q}|u\rangle=\sum_{j, k} P_{i, j} Q_{j, k} u_{k}$
(d) $(\hat{P} \hat{Q}|u\rangle)^{\dagger}=\langle u| \hat{Q}^{\dagger} \hat{P}^{\dagger}$
2. Let α, β, and γ be complex numbers and $|u\rangle,|v\rangle$, and $|\omega\rangle$ be elements of a complex vector space. Which of the following expressions is correct?
(a) $(|u\rangle\langle v|)|w\rangle=\langle v \mid w\rangle|u\rangle$
(b) $\langle u|(|v\rangle\langle w|)=\langle u \mid v\rangle^{*}|w\rangle$
(c) $(\alpha|u\rangle \otimes|v\rangle \otimes|w\rangle)^{\dagger}=\alpha^{*}\langle w| \otimes\langle v| \otimes\langle u|$
(d) $(\alpha|u\rangle+\beta|v\rangle+\gamma|w\rangle)^{\dagger}=\alpha\langle u|+\beta\langle v|+\gamma\langle w|$
3. Associated with a quantum system in its ground state $|\psi\rangle$ is a density operator $\hat{\rho}=|\psi\rangle\langle\psi|$. When expressed in terms of a particular basis $\{|n\rangle\}$, the ground state has component amplitudes $\psi_{n}=\langle n \mid \psi\rangle$. For an observable \hat{O}, having matrix elements $\langle m| \hat{O}|n\rangle=O_{m, n}$, the ground state expectation value is

$$
\langle\hat{O}\rangle=\frac{\operatorname{tr} \hat{\rho} \hat{O}}{\operatorname{tr} \hat{\rho}}
$$

Show that this is equivalent to

$$
\frac{\sum_{m, n} \psi_{m}^{*} O_{m, n} \psi_{n}}{\sum_{k}\left|\psi_{k}\right|^{2}}
$$

4. The determinant of a 2×2 matrix A is given by

$$
\operatorname{det} A=\sum_{i=1}^{2} \sum_{j=1}^{2} \epsilon_{i, j} A_{1, i} A_{2, j} .
$$

What is the correct definition of the alternating symbol?
(a) $\epsilon_{1,1}=\epsilon_{2,2}=0$ and $\epsilon_{1,2}=\epsilon_{2,1}=1$
(b) $\epsilon_{1,1}=\epsilon_{2,2}=0$ and $\epsilon_{1,2}=-\epsilon_{2,1}=1$
(c) $\epsilon_{1,1}=\epsilon_{2,2}=1$ and $\epsilon_{1,2}=\epsilon_{2,1}=-1$
(d) $\epsilon_{1,1}=-\epsilon_{2,2}=1$ and $\epsilon_{1,2}=\epsilon_{2,1}=0$
5. The determinant of a 4×4 matrix A is given by

$$
\operatorname{det} A=\sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} \sum_{l=1}^{4} \epsilon_{i, j, k, l} A_{1, i} A_{2, j} A_{3, k} A_{4, l}
$$

where $\epsilon_{i, j, k, l}$ is the 4-index Levi-Civita symbol. Which one of the following terms appears in the sum.
(a) $+A_{1,1} A_{2,2} A_{3,4} A_{4,3}$
(b) $-A_{1,3} A_{2,1} A_{3,4} A_{4,2}$
(c) $+A_{1,1} A_{2,2} A_{3,1} A_{4,2}$
(d) $-A_{1,3} A_{2,3} A_{3,3} A_{4,3}$
6. Here, $|u\rangle$ and $|v\rangle$ are elements of a vector space; \hat{A}, \hat{B}, and \hat{C} are linear operators acting on the space; and $\{|i\rangle\}$ constitutes an orthonormal basis for the space. Use the technique of inserting representations of unity, $\hat{1}=\sum_{i}|i\rangle\langle i|$, to prove that

$$
\langle u| \hat{A} \hat{B} \hat{C}|v\rangle^{*}=\langle v| \hat{C}^{\dagger} \hat{B}^{\dagger} \hat{A}^{\dagger}|u\rangle .
$$

7. Rotation about the x, y, and z axes (in the right-hand sense about the directions $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3}) is implemented by matrices

$$
R_{1}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right), R_{2}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right), R_{3}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Show that $\operatorname{det} R_{i}(\theta)=1$ for each of $i=1,2,3$ and for all values of the angle θ.
(b) Prove that $R_{i}(-\theta)=R_{i}(\theta)^{T}=R_{i}(\theta)^{-1}$.
(c) Evaluate these three composite rotations:

$$
\begin{aligned}
A & =R_{1}(-\pi / 2) R_{2}(\pi / 2) R_{1}(\pi / 2) \\
B & =R_{3}(\pi / 2) R_{2}(\pi / 4) R_{1}(\pi / 2) \\
C & =R_{1}(-\pi / 4) R_{3}(\pi / 2) R_{1}(\theta) R_{3}(-\pi / 2) R_{1}(\pi / 4)
\end{aligned}
$$

In other words, evaluate each of the matrix products to determine the resulting 3×3 matrix.
(d) Prove that A corresponds to a rotation about $\mathbf{e}_{3} ; B$ to a rotation about $\mathbf{e}_{1}+(1+\sqrt{2}) \mathbf{e}_{2}+\mathbf{e}_{3}$; and C to a rotation about $-\mathbf{e}_{2}+\mathbf{e}_{3}$. To determine the axes of rotation, solve the eigenproblems for $\left(A+A^{T}\right) / 2$, $\left(B+B^{T}\right) / 2$, and $\left(C+C^{T}\right) / 2$. Make use of $\operatorname{tr} A=1+2 \cos \theta_{A}=1$ and $\operatorname{tr} B=1+2 \cos \theta_{B}=1 / \sqrt{2}$ to determine the angles of rotation. Evaluate $\operatorname{tr} C=1+2 \cos \theta$ to confirm that the parameter θ does in fact represent the rotation angle.

```
R1[\[Theta]_] := { { 1, 0, 0}, {0, Cos[\[Theta]], -Sin[\[Theta]]}, {0, Sin[\[Theta]],
    Cos[\[Theta]]}}
R2[\[Theta]_] := { { Cos[\[Theta]], 0, Sin[\[Theta]]}, {0, 1, 0}, {-Sin[\[Theta]], 0,
    Cos[\[Theta]]}}
R3[\[Theta]_] := { { Cos[\[Theta]], -Sin[\[Theta]], 0}, {Sin[\[Theta]], Cos[\[Theta]],
    0}, {0, 0, 1}}
A = R1[-\[Pi]/2] . R2[\[Pi]/2] . R1[\[Pi]/2]
B = R3[\[Pi]/2] . R2[\[Pi]/4] . R1[\[Pi]/2]
CC = R1[-\[Pi]/4] . R3[\[Pi]/2] . R1[\[Theta]] . R3[-\[Pi]/2] . R1[\[Pi]/4]
Solve[Tr[A] == 1 + 2 Cos[\[Theta]], \[Theta]]
Solve[Tr[A] == 1 + 2 Cos[\[Theta]], \[Theta]]
Solve[Tr[A] == 1 + 2 Cos[\[Theta]], \[Theta]]
EVA = Simplify[Eigensystem[(A + Transpose[A])/2]]
EVB = Simplify[Eigensystem[(B + Transpose[B])/2]]
```

EVC $=$ Simplify[Eigensystem [(CC + Transpose[CC])/2]]
MemberQ[EVA[[1]], 1]
For $[i=1$, $\mathrm{i}<=3,++i$, $\operatorname{If}[E V A[[1]][[i]]==1$, $\operatorname{Print}[E V A[[2]][[i]]]]]$
MemberQ[EVB[[1]], 1]
For $[i=1, i<=3,++i, \operatorname{If}[E V B[[1]][[i]]==1$, $\operatorname{Print}[E V B[[2]][[i]]]]]$
MemberQ[EVC[[1]], 1]
For $[i=1$, $i<=3,++i$, $\operatorname{If}[E V C[[1]][[i]]==1$, $\operatorname{Print}[E V C[[2]][[i]]]]]$
(e) Reflection across the $x=0$ plane is represented by the matrix

$$
M=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This maps every column vector

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { to a reflected vector }\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-x \\
y \\
z
\end{array}\right) .
$$

Use a similarity transformation to determine the matrix $M^{\prime}=U^{-1} M U$ that reflects across the plane defined by $y=-x$.

