Physics 651: Exercise 1

(not for submission)

1. The natural numbers are closed under addition in the sense that any pair of natural numbers a and b has a sum $a+b$ that is also a natural number. Similarly, F is closed for multiplication if $\forall a, b \in F$ it follows that $a \cdot b=a \times b=a b \in F$. Which of the following fields is not closed under multiplication? Give a specific counterexample.
(a) The whole numbers $\mathbb{N} \backslash\{0\}$
(b) The natural numbers \mathbb{N}
(c) The integers \mathbb{Z}
(d) The rationals \mathbb{Q}
(e) The irrationals $\mathbb{R} \backslash \mathbb{Q}$
(f) The reals \mathbb{R}
(g) The complex numbers \mathbb{C}
2. Given two arbitrary complex numbers $z_{1}=x_{1}+i y_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=x_{2}+i y_{2}=r_{2} e^{i \theta_{2}}$, which one of the following is an incorrect statement?
(a) $\left|z_{1}\right|=\sqrt{x_{1}^{2}+y_{1}^{2}}=r_{1}$
(b) $\bar{z}_{1} z_{2}=r_{1} r_{2} e^{i\left(\theta_{2}-\theta_{1}\right)}$
(c) $\bar{z}_{1}+z_{2}=\left(x_{2}-x_{1}\right)+i\left(y_{2}-y_{1}\right)$
(d) $1 / z_{2}=\bar{z}_{2} /\left|z_{2}\right|^{2}$
3. Given two numbers $z_{1}=x_{1}+i y_{1}=e^{i \theta_{1}}$ and $z_{2}=x_{2}+i y_{2}=e^{i \theta_{2}}$ on the unit circle in the complex plane, which one of the following is an incorrect statement?
(a) $\left|z_{1}\right|=\sqrt{x_{1}^{2}+y_{1}^{2}}=\left|z_{2}\right|=\sqrt{x_{2}^{2}+y_{2}^{2}}=1$
(b) $z_{1} z_{2}=e^{i\left(\theta_{1}+\theta_{2}\right)}$
(c) $z_{1} / z_{2}=e^{i\left(\theta_{1}-\theta_{2}\right)}$
(d) $1 / z_{1}+1 / z_{2}=e^{-i\left(\theta_{1}+\theta_{2}\right)}$
4. Given two Grassman numbers θ and η, which two of the following expressions are incorrect?
(a) $\theta \eta=-\eta \theta$
(b) $\theta^{2}=\eta^{2}=0$
(c) $(\theta+\eta)^{2}=2 \theta \eta$
(d) $\int d \theta(3+2 \theta)=2$
(e) $(2 \theta-3 \eta)^{2}=12 \eta \theta$
5. Given vectors u_{i} and v_{i}, a matrix $M_{i, j}$, and tensors $S_{i, j, k}$ and $T_{i, j, k, l}$ (where each of the indices i, j, k, and l range from 1 to n), which one of the following is not a dimensionally compatible expression?
(a) $u_{i}=\sum_{j, k} S_{j, k, l} M_{i, l}$
(b) $M_{i, j}=(u \otimes v)_{i, j}=u_{i} v_{j}$
(c) $S_{i, j, k}=\sum_{l} M_{i, k} T_{i, k, l, j} u_{l}$
(d) $1=\operatorname{tr} M^{3}=\sum_{i, j, k} M_{i, j} M_{j, k} M_{k, i}$
6. $A_{i, j}$ represents the element in the i th row and j th column of the matrix A. (Similarly for B, C, and D.) Which one of the following index-notation expressions is equal to $\operatorname{tr} A B C D$?
(a) $A_{i, j} B_{j, k} C_{k, l} D_{l, m}$
(b) $A_{i, j} B_{k, l} C_{j, k} D_{l, i}$
(c) $D_{i, l} C_{k, i} B_{j, k} A_{l, j}$
(d) $D_{l, k} C_{k, l} B_{j, i} A_{i, j}$
7. $A_{i, j}$ represents the element in the i th row and j th column of the matrix A. (Similarly for B, C, and D.) Which one of the following index-notation expressions is equal to $\operatorname{tr} C \operatorname{tr} B A D$?
(a) $A_{i, j} B_{j, k} C_{k, l} D_{l, m}$
(b) $A_{i, j} B_{k, l} C_{j, k} D_{l, i}$
(c) $D_{j, k} C_{i, i} B_{l, j} A_{k, l}$
(d) $D_{i, j} A_{l, i} C_{k, k} B_{j, l}$
8. Given vectors u_{i} and v_{i} and a matrix $M_{i, j}$-where all indices range from 1 to n and all entries are complex-valued-which of the following necessarily describes a hermitian matrix A ?
(a) $A_{i, j}=(u \otimes v)_{i, j}=u_{i} v_{j}$
(b) $A_{i, j}=\frac{1}{2}\left(M_{i, j}+M_{j, i}^{*}\right)$
(c) $A_{i, j}=\frac{1}{2}\left(M_{i, j}+M_{j, i}\right)$
(d) $A_{i, j}=u_{i}+v_{i}+u_{j}+v_{j}$
9. The determinant of a product of square matrices A, B, C, D obeys which one of the following relations?
(a) $\operatorname{det} A B C D=\operatorname{det} A+\operatorname{det} B+\operatorname{det} C+\operatorname{det} D$
(b) $\operatorname{det} A B C D=\operatorname{det} A-\operatorname{det} B+\operatorname{det} C-\operatorname{det} D$
(c) $\operatorname{det} A B C D=(\operatorname{det} A)(\operatorname{det} B)(\operatorname{det} C)(\operatorname{det} D)$
(d) $\operatorname{det} A B C D=1+(\operatorname{det} A)[1+(\operatorname{det} B)[1+(\operatorname{det} C)[1+(\operatorname{det} D)]]]$
10. Suppose that A, B, and C are square matrices of common dimension and that I is the corresponding identity matrix. The determinant of $A+B C$ is given by which of the following expressions?
(a) $\operatorname{det}(A+B C)=\operatorname{det} A \operatorname{det} B C$
(b) $\operatorname{det}(A+B C)=\operatorname{det} A \operatorname{det}\left(I+C A^{-1} B\right)$
(c) $\operatorname{det}(A+B C)=\operatorname{det} A+\operatorname{det} B C$
(d) $\operatorname{det}(A+B C)=\operatorname{det}\left(B^{-1} A C^{-1}+I\right)$
11. The trace of a product of square matrices A, B, C, D obeys which one of the following relations?
(a) $\operatorname{tr} A B C D=\operatorname{tr} D A B C$
(b) $\operatorname{tr} A B C D=\operatorname{tr} D C B A$
(c) $\operatorname{tr} A B C D=(\operatorname{tr} A)(\operatorname{tr} B)(\operatorname{tr} C)(\operatorname{tr} D)$
(d) $\operatorname{tr} A B C D=\operatorname{tr} A+\operatorname{tr} B+\operatorname{tr} C+\operatorname{tr} D$
12. The trace of a product of square matrices A and B obeys which one of the following relations?
(a) $\operatorname{tr} A^{2} B^{3}=\operatorname{tr} B A B A B$
(b) $\operatorname{tr} A^{2} B^{3}=\operatorname{tr} B B A A B$
(c) $\operatorname{tr} A^{2} B^{3}=\operatorname{tr} A^{2} \operatorname{tr} B^{3}$
(d) $\operatorname{tr} A^{2} B^{3}=(\operatorname{tr} A)^{2}(\operatorname{tr} B)^{3}$
(e) $\operatorname{tr} A^{2} B^{3}=2 \operatorname{tr} A+3 \operatorname{tr} B$
