Physics 651: Assignment 6

(to be submitted by Thursday, November 30, 2023)

1. Test the following series for convergence:

(a)
$$\sum_{n=2}^{\infty} \frac{1}{(\ln n)^2}$$
, (b) $\sum_{n=1}^{\infty} \frac{n!}{20^n}$, (c) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$, (d) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

In each case, say whether the series converges and how you found out.

2. Four quantum dots are arranged at the corners of an $\ell \times \ell$ square centred on the origin at positions $\mathbf{r}_1 = (\ell/2)(-\hat{x} + \hat{y}), \, \mathbf{r}_2 = (\ell/2)(+\hat{x} + \hat{y}), \, \mathbf{r}_3 = (\ell/2)(-\hat{x} - \hat{y}), \, \mathrm{and} \, \mathbf{r}_4 = (\ell/2)(+\hat{x} - \hat{y}).$ Each dot can carry charge—in proportion to the number n_i of electrons resident on the dot at position \mathbf{r}_i —and hence contributes an electrostatic potential

$$\Delta \phi_i = \frac{-en_i}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}_i|}.$$

The total electrostatic potential is

$$\phi_{\text{tot}} = \Delta \phi_1 + \Delta \phi_2 + \Delta \phi_3 + \Delta \phi_4 = \sum_{\xi = \pm} \sum_{\eta = \pm} \frac{-en(\xi, \eta)}{4\pi\epsilon_0 |\mathbf{r} - (\ell/2)(\xi \hat{x} + \eta \hat{y})|},$$

with $n_1 = n(-, +)$, $n_2 = n(+, +)$, $n_3 = (-, -)$, and $n_4 = n(+, -)$. Express the total electrostatic potential as a power series in $1/r = 1/|\mathbf{r}|$. This should lead you to the multipole expansion

$$\phi_{\text{tot}} = \frac{q}{r} + \frac{\mathbf{r} \cdot \mathbf{P}}{r^3} + \frac{\mathbf{r} \cdot \overset{\leftrightarrow}{Q} \cdot \mathbf{r}}{2r^5} + \cdots, \text{ or equivalently, } \phi_{\text{tot}} = \frac{q}{r} + \frac{\hat{r}^a P^a}{r^2} + \frac{\hat{r}^a Q^{a,b} \hat{r}^b}{2r^3} + \cdots,$$

written in terms of the total charge $q=-e\sum_{i=1}^4 n_i$, the dipole moment $P^a=-e\sum_{i=1}^4 r_i^a n_i$, and the quadrupole moment $Q^{a,b}=-e\sum_{i=1}^4 (3r_i^a r_i^b n_i-r_i^2 \delta^{a,b})$.

This Mathematica code snippet may be helpful:

```
r[1] = (a/2){-1, +1, 0}

r[2] = (a/2){+1, +1, 0}

r[3] = (a/2){-1, -1, 0}

r[4] = (a/2){+1, -1, 0}

V = Sum[-e n[i]/Sqrt[({x/b, y/b, z/b} - r[i]).({x/b, y/b, z/b} - r[i])], {i, 1, 4}]

Normal[Series[V, {b, 0, 3}]] /. b -> 1
```

3. There are some useful acceleration tricks that can transform a convergent series into one that converges to the same value but faster. Here we consider Aitken's method.

From the Taylor series expansion

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

define the partial sum

$$S_n(x) = \sum_{k=1}^n \frac{(-1)^{k+1} x^k}{k}$$

and treat $(s_n) = (s_1, s_2, s_3, ...) = (S_1(1/2), S_2(1/2), S_3(1/2), ...)$ as a slowly converging sequence that approaches $\lim_{n\to\infty} s_n = \ln(1+1/2) = \ln(3/2)$.

1

Compute the terms of (s_n) , the first dozen, say. Compare them graphically to the terms of an *accelerated* sequence defined by

$$s'_n = s_{n+2} - \frac{(s_{n+2} - s_{n+1})^2}{s_{n+2} - 2s_{n+1} + s_n}$$

I suggest that you prepare two plots, one showing s_n and s_n' for n=1,2,...,10 and another showing $\log_{10}|s_n-\ln(3/2)|$ and $\log_{10}|s_n'-\ln(3/2)|$. The second plot gives an estimate of the number of converged decimal digits as a function of n.

4. Consider the function $f: \mathbb{C} \to \mathbb{C}$ defined by

$$f(z) = \frac{A}{(z-3)(z+4+i)} + \frac{B}{z(z^2+1)}.$$

(a) Prove that f(z) is meromorphic by rewriting the function as an explicit sum of five simple poles; i.e.,

$$f(z) = \sum_{k=1}^{5} \frac{C_k}{z - z_k}.$$

- (b) Report the pole location z_k and the residue $\operatorname{Res}(f, z_k)$ for each of k = 1, 2, ..., 5.
- (c) Evaluate the integral

$$\oint_C dz \, f(z)$$

around a closed contour C that corresponds to a circle of radius 3/2 centred on the point z = i/2, traversed clockwise. Sketch a diagram showing the contour and the location of the poles.

You may find it helpful to check your answers with Mathematica:

```
f[z_{-}] := A/((z-3) (z+4+[ImaginaryI])) + B/(z (z^2+1))
Residue[f[z], \{z, 0\}]
-ResidueSum[\{f[z], Abs[z-[ImaginaryI]/2] < 3/2\},z]
```

Recall that the imaginary number i can also be produced by typing the combination esc ii esc.