Physics 651: Assignment 7

(to be submitted by Tuesday, November 29, 2022)

1. Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
f(z)=\frac{A}{(z-3)(z+4+i)}+\frac{B}{z\left(z^{2}+1\right)} .
$$

(a) Prove that $f(z)$ is meromorphic by rewriting the function as an explicit sum of five simple poles; i.e.,

$$
f(z)=\sum_{k=1}^{5} \frac{C_{k}}{z-z_{k}} .
$$

(b) Report the pole location z_{k} and the residue $\operatorname{Res}\left(f, z_{k}\right)$ for each of $k=1,2, \ldots, 5$.
(c) Evaluate the integral

$$
\oint_{C} d z f(z)
$$

around a closed contour C that corresponds to a circle of radius $3 / 2$ centred on the point $z=i / 2$, traversed clockwise. Sketch a diagram showing the contour and the location of the poles.

You may find it helpful to check your answers with Mathematica:

```
f[z_] := A/((z - 3) (z + 4 + \[ImaginaryI])) + B/(z (z^2 + 1))
Residue[f[z], {z, 0}]
-ResidueSum[{f[z], Abs[z - \[ImaginaryI]/2] < 3/2},z]
```

Recall that the imaginary number i can also be produced by typing the combination [esc]ii[esc].
2. (6.11) Evaluate the counterclockwise integral around the circle $|z|=1$

$$
\oint\left(\sinh ^{2} 2 z-4 \cosh ^{3} z\right) \frac{d z}{z} .
$$

3. (6.18) Derive the first three terms of the Laurent series for $f(z)=1 /\left(e^{z}-1\right)$.
4. (6.34) Show that the Heaviside function $\theta(y)=(y+|y| /(2|y|)$ is given by the integral

$$
\theta(y)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} d x \frac{e^{i y x}}{x-i \epsilon}
$$

in which ϵ is a positive infinitesimal number.

