Physics 651: Assignment 6

(to be submitted by Thursday, November 3, 2022)

1. Test the following series for convergence:
(a) $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{2}}$,
(b) $\sum_{n=1}^{\infty} \frac{n!}{20^{n}}$,
(c) $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$,
(d) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

In each case, say whether the series converges and how you found out.
2. Four quantum dots are arranged at the corners of an $\ell \times \ell$ square centred on the origin at positions $\boldsymbol{r}_{1}=(\ell / 2)(-\hat{x}+\hat{y}), \boldsymbol{r}_{2}=(\ell / 2)(+\hat{x}+\hat{y}), \boldsymbol{r}_{3}=(\ell / 2)(-\hat{x}-\hat{y})$, and $\boldsymbol{r}_{4}=(\ell / 2)(+\hat{x}-\hat{y})$. Each dot can carry charge-in proportion to the number n_{i} of electrons resident on the dot at position \boldsymbol{r}_{i}-and hence contributes an electrostatic potential

$$
\Delta \phi_{i}=\frac{-e n_{i}}{4 \pi \epsilon_{0}\left|\boldsymbol{r}-\boldsymbol{r}_{i}\right|} .
$$

The total electrostatic potential is

$$
\phi_{\mathrm{tot}}=\Delta \phi_{1}+\Delta \phi_{2}+\Delta \phi_{3}+\Delta \phi_{4}=\sum_{\xi= \pm} \sum_{\eta= \pm} \frac{-e n(\xi, \eta)}{4 \pi \epsilon_{0}|\boldsymbol{r}-(\ell / 2)(\xi \hat{x}+\eta \hat{y})|},
$$

with $n_{1}=n(-,+), n_{2}=n(+,+), n_{3}=(-,-)$, and $n_{4}=n(+,-)$. Express the total electrostatic potential as a power series in $1 / r=1 /|\boldsymbol{r}|$. This should lead you to the multipole exansion

$$
\phi_{\mathrm{tot}}=\frac{q}{r}+\frac{\boldsymbol{r} \cdot \boldsymbol{P}}{r^{3}}+\frac{\boldsymbol{r} \cdot \stackrel{\leftrightarrow}{Q} \cdot \boldsymbol{r}}{2 r^{5}}+\cdots, \quad \text { or equivalently, } \quad \phi_{\mathrm{tot}}=\frac{q}{r}+\frac{\hat{r}^{a} P^{a}}{r^{2}}+\frac{\hat{r}^{a} Q^{a, b} \hat{r}^{b}}{2 r^{3}}+\cdots,
$$

written in terms of the total charge $q=-e \sum_{i=1}^{4} n_{i}$, the dipole moment $P^{a}=-e \sum_{i=1}^{4} r_{i}^{a} n_{i}$, and the quadrupole moment $Q^{a, b}=-e \sum_{i=1}^{4}\left(3 r_{i}^{a} r_{i}^{b} n_{i}-r_{i}^{2} \delta^{a, b}\right)$.
This Mathematica code snippet may be helpful:

```
r[1] = (a/2){-1, +1, 0}
r[2] = (a/2){+1, +1, 0}
r[3] = (a/2){-1, -1, 0}
r[4] = (a/2){+1, -1, 0}
V = Sum[-e n[i]/Sqrt[({x/b, y/b, z/b} - r[i]).({x/b, y/b, z/b} - r[i])], {i, 1, 4}]
Normal[Series[V, {b, 0, 3}]] /. b -> 1
```

3. There are some useful acceleration tricks that can transform a convergent series into one that converges to the same value but faster. Here we consider Aitken's method.

From the Taylor series expansion

$$
\ln (1+x)=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
$$

define the partial sum

$$
S_{n}(x)=\sum_{k=1}^{n} \frac{(-1)^{k+1} x^{k}}{k}
$$

and treat $\left(s_{n}\right)=\left(s_{1}, s_{2}, s_{3}, \ldots\right)=\left(S_{1}(1 / 2), S_{2}(1 / 2), S_{3}(1 / 2), \ldots\right)$ as a slowly converging sequence that approaches $\lim _{n \rightarrow \infty} s_{n}=\ln (1+1 / 2)=\ln (3 / 2)$.

Compute the terms of (s_{n}), the first dozen, say. Compare them graphically to the terms of an accelerated sequence defined by

$$
s_{n}^{\prime}=s_{n+2}-\frac{\left(s_{n+2}-s_{n+1}\right)^{2}}{s_{n+2}-2 s_{n+1}+s_{n}}
$$

I suggest that you prepare two plots, one showing s_{n} and s_{n}^{\prime} for $n=1,2, \ldots, 10$ and another showing $\log _{10}\left|s_{n}-\ln (3 / 2)\right|$ and $\log _{10}\left|s_{n}^{\prime}-\ln (3 / 2)\right|$. The second plot gives an estimate of the number of converged decimal digits as a function of n.

