Physics 651: Assignment 6
(to be submitted by Thursday, November 3, 2022)

1. Test the following series for convergence:
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In each case, say whether the series converges and how you found out.

2. Four quantum dots are arranged at the corners of an ¢ X ¢ square centred on the origin at positions
ry=/2)(-2+39), ro = (£/2)(+X + ), r3 = (£/2)(—% — 9), and rq4 = (£/2)(+X — ¥). Each dot can
carry charge—in proportion to the number 7n; of electrons resident on the dot at position r;—and hence

contributes an electrostatic potential
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The total electrostatic potential is
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with ny = n(—,+), ny = n(+,+), n3 = (-, —), and ng = n(+, —). Express the total electrostatic potential as
a power series in 1/r = 1/|r|. This should lead you to the multipole exansion
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written in terms of the total charge g = —e Z?:l n;, the dipole moment P¢ = —e Z?:l rin;, and the

quadrupole moment Q%> = —¢ Z?:l (3r§1rf’n,- - rizéa’b).

This Mathematica code snippet may be helpful:

rf1] = (a/2){-1, +1, 0}
ri2] = (a/2){+1, +1, 0}
r[3] = (a/z){'ll '11 0}

r[4] = (a/z){+ll ']-l 0}
V = Sum[-e n[i]l/Sqrt[({x/b, y/b, z/b} - r[il).({x/b, y/b, z/b} - r[i])], {i, 1, 4}]
Normal[Series[V, {b, 0, 3}1] /. b -> 1

3. There are some useful acceleration tricks that can transform a convergent series into one that converges to
the same value but faster. Here we consider Aitken’s method.

From the Taylor series expansion
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define the partial sum
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and treat (s,) = (51, 52,53,...) = (S1(1/2), 82(1/2), S3(1/2),...) as a slowly converging sequence that
approaches lim,, e 5, = In(1+1/2) =1n(3/2).



Compute the terms of (s,,), the first dozen, say. Compare them graphically to the terms of an accelerated
sequence defined by
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I suggest that you prepare two plots, one showing s, and s, for n = 1,2,...,10 and another showing
log;olsn —1n(3/2)| and log,,|s;, —In(3/2)|. The second plot gives an estimate of the number of converged
decimal digits as a function of n.



