Physics 651: Assignment 4

(to be submitted by Tuesday, October 18, 2022)
To begin, we summarize the key results of vector calculus that we discussed in class. In our notation, f is a scalar field and \boldsymbol{F} is a vector field; the nabla symbol denotes the gradient (viz., $\nabla=\hat{x} \partial_{x}+\hat{y} \partial_{y}+\hat{z} \partial_{z}$ in rectangular coordinates, $\nabla=\hat{\rho} \partial_{\rho}+(1 / \rho) \hat{\phi} \partial_{\phi}+\hat{z} \partial_{z}$ in cylindrical polar); and ∂R represents the boundary of some region R.

- The fundamental theorem for line integrals states that

$$
\int_{C} \nabla f \cdot d \boldsymbol{r}=f\left(\boldsymbol{r}_{2}\right)-f\left(\boldsymbol{r}_{1}\right),
$$

where C is a directed contour from \boldsymbol{r}_{1} to \boldsymbol{r}_{2}. The result depends only on the starting and end points and not on the particular path taken by C. (It explains why forces derived from a potential must obey an energy conservation law.)

- The divergence theorem (also known as Gauss's theorem or Ostrogradsky's theorem) states that

$$
\int_{V} \nabla \cdot \boldsymbol{F} d V=\int_{\partial V} \boldsymbol{F} \cdot d \boldsymbol{S}
$$

where $d V$ is a volume element, and $d \boldsymbol{S}=\hat{n} d S$ is the directed surface element pointing to the exterior of V. This result connects the charges contained in V to the flux through its boundary surface.

- Stoke's theorem states that

$$
\int_{S}(\nabla \times \boldsymbol{F}) \cdot d \boldsymbol{S}=\int_{\partial S} \boldsymbol{F} \cdot d \boldsymbol{r} .
$$

Here, S is an open surface, and ∂S is a contour along the boundary of S directed in a right-hand sense with respect to the orientation of $d \boldsymbol{S}$. This result connects the circulation of a field on the surface to the field's net contribution around the surface's edge.

1. Consider the vector field

$$
\boldsymbol{F}=\boldsymbol{F}(\rho, \phi, z)=\frac{2\left[\rho \hat{\rho}+\left(\ell^{2} / \rho\right)(\cos \phi)(\sin \phi) \hat{\phi}+z \hat{z}\right]}{\left(\rho^{2}+\ell^{2} \sin ^{2} \phi+z^{2}\right)^{2}}
$$

expressed in cylindrical polar coordinates.
(a) Explain why the position $\boldsymbol{r}=\rho \hat{\rho}+z \hat{z}$ has a differential $d \boldsymbol{r}=(d \rho) \hat{\rho}+\rho(d \phi) \hat{\phi}+(d z) \hat{z}$.
(b) Consider the line integral along a contour C that can be parameterized by $\rho(t)=\ell t, \phi(t)=\pi t / 2$, $z(t)=\ell \cos \pi t$ with t ranging from 0 to 1 . Substitute this specific contour parameterization into

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{C} \frac{2\left[\rho d \rho+\ell^{2}(\cos \phi)(\sin \phi) d \phi+z d z\right]}{\left(\rho^{2}+\ell^{2} \sin ^{2} \phi+z^{2}\right)^{2}}
$$

Evaluate the integral to obtain $2 / 3 \ell^{2}$.
(c) Find a scalar field $V(\boldsymbol{r})$ such that $\boldsymbol{F}=-\nabla V$.
(d) Now use the fundamental theorem for line integrals to show that

$$
\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\frac{2}{3 \ell^{2}} .
$$

2. A potential $\phi(r)=Q / 4 \pi r^{1+\epsilon}$ gives rise to a field $\boldsymbol{E}=-\nabla \phi(r)$.
(a) Provide an explicit expression for $\boldsymbol{E}(\boldsymbol{r})$.
(b) Let V be a sphere of radius R centred on the coordinate origin. Compute $\int_{\partial V} \boldsymbol{E} \cdot d \boldsymbol{S}$ with an eye to its dependence on R.
(c) Apply the divergence theorem, and argue that $Q \delta(\boldsymbol{r})$ can be interpreted as a point charge at the origin iff $\epsilon=0$.
3. Verify Stokes' theorem for the vector field $\boldsymbol{F}(x, y, z)=-y \hat{x}+x \hat{y}-z \hat{z}$ and surface S, where S is a 2×2 square patch centred on the origin with corners at $(-1,-1,0)$ and $(1,1,0)$.
4. Prove the following:
(a) For 3-vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$,

$$
\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{i, j, k} a_{i} b_{j} c_{k}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=(\boldsymbol{b} \times \boldsymbol{c}) \cdot \boldsymbol{a}=(\boldsymbol{c} \times \boldsymbol{a}) \cdot \boldsymbol{b}
$$

(b) $\nabla \cdot(\nabla \times \boldsymbol{a})=0$;
(c) $\nabla \times(\nabla \times \boldsymbol{a})=\nabla(\nabla \cdot \boldsymbol{a})-\nabla^{2} \boldsymbol{a}$.

