
Physics 651: Assignment 1
(to be submitted by Tuesday, September 6, 2022)

1. Given a set of 2𝑁 Grassman numbers {𝜃1, 𝜃2, . . . , 𝜃𝑁 , 𝜂1, 𝜂2, . . . , 𝜂𝑁 }, we would like to evaluate integrals
of the form ∫

𝑑𝜃 𝑑𝜂 𝑒−𝜃𝑇𝐴𝜂 =

∫
𝑑𝜃1 · · · 𝑑𝜃𝑁 𝑑𝜂1 · · · 𝑑𝜂𝑁 exp

(
−
∑︁
𝑖, 𝑗

𝜃𝑖𝐴𝑖, 𝑗𝜂 𝑗

)
,

where the indices 𝑖, 𝑗 in the sum run over 1, 2, . . . , 𝑁 . We can think of 𝐴 as an 𝑁 × 𝑁 matrix of real- or
complex-valued elements.

(a) For the 𝑁 = 2 case, show explicitly that the integration yields 𝐴1,1𝐴2,2 − 𝐴1,2𝐴2,1.
(b) Evaluate the integral expression for 𝑁 = 3.
(c) Argue convincingly (in words, no explicit calculation is required) that the generic result is just det 𝐴.
(d) Since the Grassman variables obey an “exlcusion principle” (viz., 𝜃2

𝑖
= 𝜂2

𝑖
= 0), we can think of

them as describing fermionic degrees of freedom. The many-body wave function for a system of 𝑁
(spinless) fermions is Ψ(𝒓1, 𝒓2, . . . , 𝒓𝑁 ) = (𝑁!)−1/2 det 𝐴, where 𝐴𝑖, 𝑗 = 𝜓 𝑗 (𝒓𝑖) is the single-particle
wave function for the 𝑖th particle in the 𝑗 th level. Return to the 𝑁 = 2 case, and consider what
happens (i) if 𝒓1 and 𝒓2 take arbitrary values but 𝜓1 = 𝜓2; and (ii) if 𝜓1 ≠ 𝜓2 but 𝒓1 = 𝒓2. Explain
what your mathematical observations mean physically.

2. A ball tossed into the air travels according to ℎ = 𝑣0𝑡− 1
2𝑔𝑡

2. Here, 𝑣0 is the initial vertical velocity (upward),
and 𝑔 is the gravitational acceleration (downward). A set of poorly taken measurements (eyeballed by an
observer with a stopwatch against rough height marks on the wall) is given in the table below.

time 𝑡 (s) height ℎ (m)
0.5 9.0
1.0 15.4
1.5 19.3
2.0 20.7
2.5 19.7
3.0 16.0
3.5 10.1
4.0 2.1

(a) Write out the corresponding linear system of eight equations and two unknowns in matrix format.
(b) Construct the Moore-Penrose pseudoinverse.
(c) Give best estimates (in the least squares sense) of the initial velocity (𝑣0) and the gravitational

acceleration (𝑔).
(d) The observer has reported no uncertainties on the measurements. How could you estimate the

“error bars” on 𝑣0 and 𝑔 based on the data you were given? (One possibility is so-called Jackknife
resampling.)

You may want to check your answer in Mathematica. To install the software, search for “Research
Software” in MyOleMiss and follow the links. Open a new session (File > New > Notebook) from the
menu bar. Type the following commands, each followed by shift+return or shift+enter.

tlist = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}
hlist = {9.0, 15.4, 19.3, 20.7, 19.7, 16.0, 10.1, 2.1}



x[t_] = v0*t - (g/2)*t^2
xlist = Map[x, tlist]
row1 = xlist /. {v0 -> 1, g -> 0}
row2 = xlist /. {v0 -> 0, g -> 1}
MT = {row1, row2}
M = Transpose[MT]
M // MatrixForm
M.{v0, g} == xlist
hlist // MatrixForm
PseudoInverse[M] // MatrixForm
PseudoInverse[M].hlist

3. The Pauli matrices are generators of the SU(2) algebra that governs spin-half quantum angular momenta.
They are defined as

𝜎𝑥 =

(
0 1
1 0

)
, 𝜎𝑦 =

(
0 −𝑖
𝑖 0

)
, 𝜎𝑧 =

(
1 0
0 −1

)
.

Here, 𝑖 is the imaginary number satisfying 𝑖2 = −1.

(a) Compute the trace and determinant of each Pauli matrix.

(b) Show that 𝜎2
𝑥 = 𝜎2

𝑦 = 𝜎2
𝑧 = −𝑖𝜎𝑥𝜎𝑦𝜎𝑧 =

(
1 0
0 1

)
= 𝐼 (the identity matrix)

(c) Prove the anticommutation rule{
𝜎𝑎, 𝜎𝑏

}
= 𝜎𝑎𝜎𝑏 + 𝜎𝑏𝜎𝑎 = 2𝐼𝛿𝑎,𝑏 .

Here, 𝑎 and 𝑏 range over the indices 𝑥, 𝑦, 𝑧, and 𝛿 is the Kronecker delta symbol.
(d) Prove the commutation rule [

𝜎𝑎, 𝜎𝑏

]
= 𝜎𝑎𝜎𝑏 − 𝜎𝑏𝜎𝑎 = 2𝑖𝜖𝑎,𝑏,𝑐𝜎𝑐 .

It is understood that the repeated 𝑐 implies a summation over 𝑥, 𝑦, 𝑧, and 𝜖 is the Levi-Civita symbol.
(e) We’ll let 𝒏 represent an arbitrary vector in R3 and adopt the notation 𝝈 (boldface sigma) to represent

the Cartesian triple of matrices (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧). Prove that

𝑒𝑖𝒏·𝝈 = 𝐼 cos 𝜃 + 𝑖( 𝒏̂ · 𝝈) sin 𝜃,

where 𝜃 = |𝒏| and 𝒏̂ = 𝒏/𝜃 is a unit vector. The easiest approach is to make use of the standard
Taylor series expansions for the exponential, cosine, and sine functions.

4. Consider the following five configurations in which six sites (alternately coloured black and white around
the hexagon) are grouped into oppositely coloured pairs:

|1⟩ = |2⟩ =
|4⟩ =|3⟩ = |5⟩ =



(This is a reasonable basis choice for the valence electrons in a benenze ring; in that case, each bond
represents an entangled pair of the form ( |↑↓⟩ − |↓↑⟩)/

√
2.) The overlap 𝑆 is the matrix whose elements

are the inner products 𝑆𝑖, 𝑗 = ⟨𝑖 | 𝑗⟩ = 2𝐿𝑖, 𝑗−3. The values are controlled by the number (𝐿𝑖, 𝑗) of closed
loops that are formed when configurations |𝑖⟩ and | 𝑗⟩ are superimposed.

(a) Determine the matrix 𝑆, its trace (tr 𝑆), determinant (det 𝑆), and inverse (𝑆−1). Feel free to use a
computer.

(b) This basis is not orthonormal. Show that the resolution of unity is 1̂ =
∑

𝑖, 𝑗 |𝑖⟩𝑆−1
𝑖, 𝑗
⟨ 𝑗 |. Specifically,

prove (i) that 1̂|𝑘⟩ = |𝑘⟩ for each of 𝑘 = 1, 2, 3, 4, 5 and (ii) that 1̂2 = 1̂.
(c) The pairing rule actually supports 3! = 6 possible configurations. (i) Draw the missing sixth state,

call it |6⟩, and argue that it is extraneous. (ii) Carry out the projection step |6′⟩ = 1̂|6⟩ to resolve |6⟩
as a linear combination of the other five states. (iii) Check that ⟨6|6′⟩ = ⟨6|1̂|6⟩ = 1 to verify that no
weight has been lost.

(d) Show that orthogonalization of this basis amounts to finding a matrix 𝑀 that satisfies 𝑀𝑇𝑀 = 𝑆.
This is the so-called “square root” of the matrix 𝑆. In general, this decomposition is not unique.

(e) Take as a starting point two states

|𝑢1⟩ =
√︂

2
5
(
|1⟩ + |2⟩

)
and |𝑢2⟩ =

√︂
2
3
(
|1⟩ − |2⟩

)
that have been constructed to satisfy ⟨𝑢1 |𝑢1⟩ = ⟨𝑢2 |𝑢2⟩ = 1 and ⟨𝑢1 |𝑢2⟩ = 0. Perform one step in the
Gram-Schmidt process to generate the next state,

|𝑢3⟩ = − 2
√

15
(
|1⟩ + |2⟩

)
+
√︂

5
3
|3⟩.

Confirm that {|𝑢1⟩, |𝑢2⟩, |𝑢3⟩} constitute an orthonormal (sub)set. In principle, you could continue
with further Gram-Schmidt steps to generate |𝑢4⟩ and |𝑢5⟩, but please don’t!

I encourage you to make your life easier by seeking computer assistance for part (a). You’ll want to
determine the loop counts by hand, but everything else can be automated. Here (with some entries elided)
is the relevant code in Mathematica:

L = {{3, 1, 2, 2, 2}, {1, 3, 2, 2, 2}, ..., {2, 2, 1, 1, 3}}
S = Map[((1/2)^(3 - #)) &, L]
S // MatrixForm
Tr[S]
Det[S]
Sinv = Inverse[S]
Sinv // MatrixForm


