Chaotic motion

Phys 750 Lecture 9



Finite-difference equations

» Finite difference equation approximates a differenfial
equation as an iterative map

(Tna1,Vny1) = M{(Zn, vp)]

» Evolution from fime ¢ = 0 to ¢y = N x At given by

(@, vn) = MM M(x0,v0)] - ]
N—— ———’

N times



Finite-difference equations

» Backward analysis theorem: the iterative map is exactly
solving some modified differential equation

M — ' (t) =(A(z(t), v(t), 1)+ ¢

» Are the additional € terms “relevant”? original PDE

» Can their effect be made arbitrarily small?

» Do they change the physics qualitatively or break
important conservation laws?



Hamiltonian systems

» Framework for non-dissipative, second-order ODEs

» System described by a Hamiltonian & in terms of
generalized coordinates (p, ¢)

| . T odt
» Equations of motion: d qu
g= % _

—dt Op



Hamiltonian systems

» Key property of Hamiltonian systems: symplectic
symmetry = conservation of phase space volume
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> q



Limits to predictive power

» Suppose that
1. the finite difference scheme is high-order

2. the resulting map M is well-behaved and correct up
to irrelevant corrections

3. the time step At is taken suitable small

» Are we then guaranteed a controlled, predicable
solution? No.



Oscillatory motion

» Simple pendulum: linear “Hooke's Law”
restoring force for small angular
deviations

d2
7 = —5‘,\ small angle
approximation

» Oscillatory solution \

0(t) = 0 sin(Qt + ¢)

with characteristic angular frequency Q = \/g/1



Oscillatory motion

» Important features:

» oscillations are perfectly regular in
time and confinue forever (no decay)

» angular frequency is independent of \

the mass 2 and amplitude 6,




Oscillatory motion

» Usual trick for numerical solution: decompose the second-
order ODE into a system of first-order equations

dw g
7P
dt [
" _,
dt

» Convert to a system of difference equations by
discretizing the time variable, ¢ — ¢, = n x At



Oscillatory motion

» Simple pendulum is a Hamiltonian system described by

an angular coordinate _and angular momentum

: 0 . L =1
where , is the moment of inertia:
I = ml
L* 1
H=— + -I0%0°
21 2

» Hamilton's equations reproduce the first-order pair:

j= " a2 dw _ 9y
0 ) oAt
. OH L df
0 = = — — W

T oL T dt

W



Oscillatory motion

» Hamiltonian system implies conservation
of energy and preservation of the

symplectic symmetry

6 (radians)

Simple Pendulum - Euler method
Length=1m timestep=004s

» Neither are satisfied with Euler updates
(small errors accumulate over each cycle)

» Important to use higher-order integration
methods



Dissipation

» Simple pendulum is highly idealized

» More realistic models might include friction or damping

terms proportional to the velocity

d*0 qg db

T _dp_ a2
112 T

» Boring: Analytic solution shows that oscillations die out

0(t) ~ e qt/2



Dissipation

0.2

0.1 Hi

» Depending on the strength

o
T

of the parameter ¢, the
behaviour may be under-,
over-, or critically damped

0 (radians)

-0.1 +

0(t) = o™ sin| (27 — 1¢?) Pt + ¢

0(t) = O exp {—q/Q + (

0(t) = (6o + Ct)e 9"/?




Dissipation + driving force

» We now add a driving force to the problem

» Assume a sinusoidal form with strength £, and angular
frequency Qp
db

d*0 qg
“U_ 9y C Fr sin Qt
112 [0 Lgy T DRIEAED

» Pumps energy into or out of the system and competes
with the natural frequency when Qp #£ Q




Dissipation + driving force

0.2 N f .
» In this case, the steady state /T @ \ ariven o
o o o o o 1 | b=~ e B
solution is sinusoidal in the |
driving frequency: LAV AVAVAVAVA
0(t) = O sin(Qpt +¢) \
» But the amplitude has a resonance <2 % . ..
when the driving frequency is \ e

close fo the natural frequency: natural frequency

0, = I'p transient dies out
V(2 —Q7)% + (¢2p)?




Non-linearity

» Small angular approximation is no
longer appropriate

» Pendulum may swing completely
around ifs pivot

» No analytical solution with
sinusoidal restoring force

d?0 , db .
ﬁ:—%smﬁ th Fpsin)pt
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» When £, is sufficiently large, the motion has no simple

Chaotic motion

long-time behaviour
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» The motion never repeats and is said fo be chaotic

» But it is not random



Chaotic motion

» What does it mean fo be non-repeating, unpredictable,
and yet still deterministic?

» Remember: the behaviour is unique and governed by the
specification of the initial value problem



Chaotic motion

» For chaotic systems, infinitesimal variations in the initial
conditions lead to different long-time behaviour

» For example, two identical chaotic pendulums with nearly
identical initially conditions will show exponential growth
in the angular distance A6 = |0, — 6,



Transition to chaos

» Regular and chaotic regions distinguished by a change of
sign of the Lyapunov exponent \

AO ~ e

O{}T i 1 H H 10
A8 versus time F{) =0.5

i H I 4 | 1
0 10 20 30 40 50 0 50 100 150
time {(s) time (s)

A <0 A >0



Lyapunov exponents

» |n general, there is a Lyapunov exponent associated with
each phase-space degree of freedom

(\51(?;\ [ 161(0)]

02(0)]
= M (t) ,

\|5N.(t) ¥, \!5N:(0) Y,

M(t) = Ul exp

N
» For a conservative system: > Ax =0

k=1

N
» For a dissipative system: > " A, <0
k:

/)\175

l
Unitary transformation:

Aot

| Ant )/

@

¢

matrix of Eigenvectors
of M



The view from phase space
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» Chaotic path through phase space still exhibits structure

» There are many orbits that are nearly closed and persist
for one or two cycles



Strange attractor

» Poincaré section: only plot points at |
times in phase with the driving force
Opt = 2nm
for integer n

o (radians/s)

» For a wide range of initial conditions,

trajectories lie on this surface of 2

points, known as a strange aftractor
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Period doubling
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» For the pendulum, the route to chaos is via period
doubling

» The system shows response at a subharmonic Qp /2



Period doubling

i » Bifurcation diagram
Bifurcation diagram 8 versus F P plois ( Poin(uré Se(ﬁon
versus driving force

"x\j . . .
/ 1 » Regularity in windows

,. of period 27
I m p

\Q} » Feigenbaum delta:
14 145 1.5 I 2 N

. 0, =

P Fn—l—l _ Fn

» Universal value ¢ ~ 4.669



