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Finite-difference equations

‣ Finite difference equation approximates a differential 
equation as an iterative map 

‣ Evolution from time           to                         given by

(xn+1, vn+1) = M[(xn, vn)]

(xN , vN ) = M[M[· · ·M| {z }
N times

[(x0, v0)] · · · ]]

t = 0 tN = N⇥�t



Finite-difference equations
‣ Backward analysis theorem: the iterative map is exactly 

solving some modified differential equation 

‣ Are the additional     terms “relevant”? 

‣ Can their effect be made arbitrarily small? 

‣ Do they change the physics qualitatively or break 
important conservation laws? 

M� v�(t) = A(x(t), v(t), t) + �

� original PDE



Hamiltonian systems
‣ Framework for non-dissipative, second-order ODEs 

‣ System described by a Hamiltonian      in terms of 
generalized coordinates  
 

‣ Equations of motion:

H
(p, q)

ṗ ⌘ dp

dt
= ��H

�q

q̇ ⌘ dq

dt
=

�H

�p



Hamiltonian systems

q

p

t = t1 t = t2

q

p

‣ Key property of Hamiltonian systems: symplectic 
symmetry = conservation of phase space volume



Limits to predictive power
‣ Suppose that  

1. the finite difference scheme is high-order 

2. the resulting map       is well-behaved and correct up 
to irrelevant corrections 

3. the time step       is taken suitable small  

‣ Are we then guaranteed a controlled, predicable 
solution? No.

M

�t



Oscillatory motion
‣ Simple pendulum: linear “Hooke’s Law” 

restoring force for small angular 
deviations  
 

‣ Oscillatory solution 
 
 
with characteristic angular frequency

�(t) = �0 sin(�t + ⇥)

θ l

F

d2�

dt2
= �g

l
�

� =
�

g/l

small angle 
approximation



Oscillatory motion

‣ Important features: 

‣ oscillations are perfectly regular in 
time and continue forever (no decay) 

‣ angular frequency is independent of 
the mass      and amplitudem �0

θ l

F



Oscillatory motion
‣ Usual trick for numerical solution: decompose the second-

order ODE into a system of first-order equations  

‣ Convert to a system of difference equations by 
discretizing the time variable,

d⇥

dt
= �g

l
�

d�

dt
= ⇥

t ! tn = n⇥�t



Oscillatory motion
‣ Simple pendulum is a Hamiltonian system described by 

an angular coordinate    and angular momentum             
where                 is the moment of inertia:  
 

‣ Hamilton’s equations reproduce the first-order pair:  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L2

2I
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1
2
I�2�2
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⇥�
= �I�2�
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L

I
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Oscillatory motion

‣ Hamiltonian system implies conservation 
of energy and preservation of the 
symplectic symmetry 

‣ Neither are satisfied with Euler updates 
(small errors accumulate over each cycle) 

‣ Important to use higher-order integration 
methods



Dissipation
‣ Simple pendulum is highly idealized 

‣ More realistic models might include friction or damping 
terms proportional to the velocity 
 

‣ Boring: Analytic solution shows that oscillations die out 

�(t) � e�qt/2

d2�

dt2
= �g

l
� � q

d�

dt



Dissipation

‣ Depending on the strength 
of the parameter    , the 
behaviour may be under-, 
over-, or critically damped

q

�(t) =
�
�0 + Ct

⇥
e�qt/2
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�qt/2 sin
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Dissipation + driving force
‣ We now add a driving force to the problem 

‣ Assume a sinusoidal form with strength        and angular 
frequency 
 

‣ Pumps energy into or out of the system and competes 
with the natural frequency when 

FD

�D

�D �= �

d2�

dt2
= �g

l
� � q

d�

dt
+ FD sin �Dt



Dissipation + driving force
‣ In this case, the steady state 

solution is sinusoidal in the 
driving frequency:  

‣ But the amplitude has a resonance 
when the driving frequency is 
close to the natural frequency:

�(t) = �0 sin(�Dt + ⇥)

natural frequency 
transient dies out�0 =

FD�
(�2 � �2

D)2 + (q�D)2



Non-linearity
‣ Small angular approximation is no 

longer appropriate 

‣ Pendulum may swing completely 
around its pivot 

‣ No analytical solution with a 
sinusoidal restoring force

θ

F

d2�

dt2
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l
sin � � q

d�
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+ FD sin �Dt



Chaotic motion

‣ When        is sufficiently large, the motion has no simple 
long-time behaviour 

‣ The motion never repeats and is said to be chaotic 

‣ But it is not random

FD



Chaotic motion

‣ What does it mean to be non-repeating, unpredictable, 
and yet still deterministic? 

‣ Remember: the behaviour is unique and governed by the 
specification of the initial value problem



Chaotic motion

‣ For chaotic systems, infinitesimal variations in the initial 
conditions lead to different long-time behaviour 

‣ For example, two identical chaotic pendulums with nearly 
identical initially conditions will show exponential growth 
in the angular distance �� ⇥ |�1 � �2|



Transition to chaos
‣ Regular and chaotic regions distinguished by a change of 

sign of the Lyapunov exponent

�� � e�t

� > 0� < 0

�



Lyapunov exponents
‣ In general, there is a Lyapunov exponent associated with 

each phase-space degree of freedom 
 
 
 

‣ For a conservative system:  

‣ For a dissipative system: 

�
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The view from phase space

‣ Chaotic path through phase space still exhibits structure 

‣ There are many orbits that are nearly closed and persist 
for one or two cycles



Strange attractor

‣ Poincaré section: only plot points at 
times in phase with the driving force 
 
for integer 

‣ For a wide range of initial conditions, 
trajectories lie on this surface of 
points, known as a strange attractor

�Dt = 2n�

n

fractal structure



Period doubling

‣ For the pendulum, the route to chaos is via period 
doubling 

‣ The system shows response at a subharmonic �D/2



Period doubling
‣ Bifurcation diagram 

plots a Poincaré section 
versus driving force 

‣ Regularity in windows 
of period  

‣ Feigenbaum delta:

�n ⇥
Fn � Fn�1

Fn+1 � Fn

� � 4.669

2n

‣ Universal value


