Chaotic motion

Phys 750 Lecture 9

Finite-difference equations

- Finite difference equation approximates a differential equation as an iterative map

$$
\left(x_{n+1}, v_{n+1}\right)=\mathcal{M}\left[\left(x_{n}, v_{n}\right)\right]
$$

- Evolution from time $t=0$ to $t_{N}=N \times \Delta t$ given by

$$
\left(x_{N}, v_{N}\right)=\underbrace{\mathcal{M}[\mathcal{M}[\cdots \mathcal{M}}_{N \text { times }}\left[\left(x_{0}, v_{0}\right)\right] \cdots]]
$$

Finite-difference equations

- Backward analysis theorem: the iterative map is exactly solving some modified differential equation

$$
\begin{aligned}
& \quad \mathcal{M} \rightarrow v^{\prime}(t)=A(x(t), v(t), t)+\epsilon \\
& \text { - Are the additional } \epsilon \text { terms "relevant"? }
\end{aligned}
$$

- Can their effect be made arbitrarily small?
- Do they change the physics qualitatively or break important conservation laws?

Hamiltonian systems

- Framework for non-dissipative, second-order ODEs
- System described by a Hamiltonian H in terms of generalized coordinates (p, q)
- Equations of motion:

$$
\begin{gathered}
\dot{p} \equiv \frac{d p}{d t}=-\frac{\partial H}{\partial q} \\
\dot{q} \equiv \frac{d q}{d t}=\frac{\partial H}{\partial p}
\end{gathered}
$$

Hamiltonian systems

- Key property of Hamiltonian systems: symplectic symmetry = conservation of phase space volume

Limits to predictive power

- Suppose that

1. the finite difference scheme is high-order
2. the resulting map \mathcal{M} is well-behaved and correct up to irrelevant corrections
3. the time step Δt is taken suitable small

- Are we then guaranteed a controlled, predicable solution? №.

Oscillatory motion

- Simple pendulum: linear "Hooke's Law" restoring force for small angular deviations

$$
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \oplus<\underset{\text { approximation }}{\text { small angle }}
$$

- Oscillatory solution

$$
\theta(t)=\theta_{0} \sin (\Omega t+\phi)
$$

with characteristic angular frequency $\Omega=\sqrt{g / l}$

Oscillatory motion

- Important features:
- oscillations are perfectly regular in time and continue forever (no decay)
- angular frequency is independent of the mass m and amplitude θ_{0}

Oscillatory motion

- Usual trick for numerical solution: decompose the secondorder ODE into a system of first-order equations

$$
\begin{aligned}
& \frac{d \omega}{d t}=-\frac{g}{l} \theta \\
& \frac{d \theta}{d t}=\omega
\end{aligned}
$$

- Convert to a system of difference equations by discretizing the time variable, $t \rightarrow t_{n}=n \times \Delta t$

Oscillatory motion

- Simple pendulum is a Hamiltonian system described by an angular coordinate ${ }_{\theta}$ and angular momentum where

$$
I=m l^{2} \text { is the moment of inertia: }
$$

$$
H=\frac{L^{2}}{2 I}+\frac{1}{2} I \Omega^{2} \theta^{2}
$$

- Hamilton's equations reproduce the first-order pair:

$$
\begin{aligned}
\dot{L} & =-\frac{\partial H}{\partial \theta}=-I \Omega^{2} \theta \\
\dot{\theta} & =\frac{\partial H}{\partial L}=\frac{L}{I}
\end{aligned} \longleftrightarrow \begin{aligned}
& \frac{d \omega}{d t}=-\frac{g}{l} \theta \\
& \frac{d \theta}{d t}=\omega
\end{aligned}
$$

Oscillatory motion

- Hamiltonian system implies conservation of energy and preservation of the symplectic symmetry
- Neither are satisfied with Euler updates
 (small errors accumulate over each cycle)
- Important to use higher-order integration methods

Dissipation

- Simple pendulum is highly idealized
- More realistic models might include friction or damping terms proportional to the velocity

$$
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \theta-q \frac{d \theta}{d t}
$$

- Boring: Analytic solution shows that oscillations die out

$$
\theta(t) \sim e^{-q t / 2}
$$

Dissipation

- Depending on the strength of the parameter q, the behaviour may be under, over, or critically damped

$$
\begin{aligned}
& \theta(t)=\theta_{0} e^{-q t / 2} \sin \left[\left(\Omega^{2}-\frac{1}{4} q^{2}\right)^{1 / 2} t+\phi\right] \\
& \theta(t)=\theta_{0} \exp \left[-q / 2 \pm\left(\frac{1}{4} q^{2}-\Omega^{2}\right)^{1 / 2}\right] t \\
& \theta(t)=\left(\theta_{0}+C t\right) e^{-q t / 2}
\end{aligned}
$$

Dissipation + driving force

- We now add a driving force to the problem
- Assume a sinusoidal form with strength F_{D} and angular frequency Ω_{D}

$$
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \theta-q \frac{d \theta}{d t}+F_{D} \sin \Omega_{D} t
$$

- Pumps energy into or out of the system and competes with the natural frequency when $\Omega_{D} \neq \Omega$

Dissipation + driving force

- In this case, the steady state solution is sinusoidal in the driving frequency:

$$
\theta(t)=\theta_{0} \sin \left(\Omega_{D} t+\phi\right)
$$

- But the amplitude has a resonance when the driving frequency is close to the natural frequency:

$$
\theta_{0}=\frac{F_{D}}{\sqrt{\left(\Omega^{2}-\Omega_{D}^{2}\right)^{2}+\left(q \Omega_{D}\right)^{2}}}
$$

Non-linearity

- Small angular approximation is no longer appropriate
- Pendulum may swing completely around its pivot
- No analytical solution with a sinusoidal restoring force

$$
\frac{d^{2} \theta}{d t^{2}}=-\frac{g}{l} \sin \theta-q \frac{d \theta}{d t}+F_{D} \sin \Omega_{D} t
$$

Chaotic motion

- When F_{D} is sufficiently large, the motion has no simple long-time behaviour
- The motion never repeats and is said to be chaotic
- But it is not random

Chaotic motion

- What does it mean to be non-repeating, unpredictable, and yet still deterministic?
- Remember: the behaviour is unique and governed by the specification of the initial value problem

Chaotic motion

- For chaotic systems, infinitesimal variations in the initial conditions lead to different long-time behaviour
- For example, two identical chaotic pendulums with nearly identical initially conditions will show exponential growth in the angular distance $\Delta \theta \equiv\left|\theta_{1}-\theta_{2}\right|$

Transition to chaos

- Regular and chaotic regions distinguished by a change of sign of the Lyapunov exponent λ

$$
\Delta \theta \sim e^{\lambda t}
$$

$\lambda<0$

$\lambda>0$

Lyapunov exponents

- In general, there is a Lyapunov exponent associated with each phase-space degree of freedom
$\left(\begin{array}{c}\left|\delta_{1}(t)\right| \\ \left|\delta_{2}(t)\right| \\ \vdots \\ \left|\delta_{N}(t)\right|\end{array}\right)=M(t)\left(\begin{array}{c}\left|\delta_{1}(0)\right| \\ \left|\delta_{2}(0)\right| \\ \vdots \\ \left|\delta_{N}(0)\right|\end{array}\right) \quad M(t)=U^{T} \exp \left(\begin{array}{cccc}\lambda_{1} t & & & \\ & \lambda_{2} t & & \\ & & \ddots & \\ & & & \lambda_{N} t\end{array}\right)$
- For a conservative system: $\sum_{k=1}^{N} \lambda_{k}=0$
- For a dissipative system: $\sum_{k=1}^{N} \lambda_{k}<0$

Unitary transformation: matrix of Eigenvectors
of M

The view from phase space

- Chaotic path through phase space still exhibits structure
- There are many orbits that are nearly closed and persist for one or two cycles

Strange attractor

- Poincaré section: only plot points at times in phase with the driving force

$$
\Omega_{D} t=2 n \pi
$$

for integer n

- For a wide range of initial conditions, trajectories lie on this surface of points, known as a strange attractor

Period doubling

- For the pendulum, the route to chaos is via period doubling
- The system shows response at a subharmonic $\Omega_{D} / 2$

Period doubling

- Bifurcation diagram plots a Poincaré section versus driving force
- Regularity in windows of period 2^{n}
- Feigenbaum delta:

$$
\delta_{n} \equiv \frac{F_{n}-F_{n-1}}{F_{n+1}-F_{n}}
$$

- Universal value $\delta \approx 4.669$

