Boundary-value problems

Phys 750 Lecture 8



Boundary-value problems

» Important class of problems in physics:
ditferential equations with solutions
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» Electrostatic potentials A
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» Normal modes in wave problems
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» Heat flow



Boundary-value problems

» Electric potential produced by a distribution of static
charges is described by the Poisson equation:
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» Or, in free space, by the Laplace equation:
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» Must be augmented by specific values of the potential
and electric field ( ¢ and £ = —v¢) at the boundaries




Boundary-value problems

» Boundary-value ODEs also arise if we solve for the
normal modes of time-dependent partial-differential
equations (PDEs)
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» Connected by a Fourier transform in the time coordinate:
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Boundary-value problems

» Familiar analytical approach is to expand the solution
using special functions: (sinusoidal or Bessel functions,
cylindrical or spherical harmonics)

» The goal of such speciral methods is fo decompose the
solution in a complete set of functions that automatically
satisty the given boundary conditions

» Only convenient in situations with high symmetry (e.qg.,
sphere, cylinder, or box)



Discretization

boundary points

(fixed) \
» For regions with no special

symmetry, we have to resort fo
finite-diftference methods
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Interior points
(variable)



Discretization

» Generalize spatial derivatives to multiple dimensions
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Discretization

» Discretized ODEs are linear; equivalent fo a linear system
of equations M, sUs = Ag

» Unified index: U, = UW(Zi, Yj, 2k) = Ui ik

o(i,5,k) =i+ Lj + L?k  (LxLxL box)

» Solution possible via matrix inversion U = M~ A

» Method scales badly: vector size ~ 1/(Ax)° ~ L?,
matrix storage ~ L°, matrix inversion complexity ~ L°



Relaxation methods

Given Discrete mesh of points:

Uge = p(T) u; = u(x;) =ula+i(b—a)/L)
Fix two of

u(a), v’ (a)

u(b), u'(b) ur, = u(b)
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Relaxation methods

» Jacobi method algorithm:

e Set the fixed u; along the boundaries

e Loop though all interior points x;

— Set uV = %(uffl ud + (Az)?p;)

— Keep track of largest Au = |[ul®V — u$'d

1

e Repeat until Au < €



Relaxation methods

» Various update orderings (with different convergence
properties!) are possible

Jacobi Checker-board

Gauss-Seidel




Relaxation methods

» Slow convergence since it takes many steps for changes to
propagate across the grid

» Better resolution (Az — 0) means that the length scale
for propagation increases ( L = 1/Az — oo

» Might try to reweight so that new values incorporate
more of the changes from neighbouring points:

u™V = au+ (1 — a)u o =1 Jacobi
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Relaxation methods

» Overrelaxation can be connected fo the corresponding

time-dependent diffusion problem
Up = Ugy + Uyy — F(Uug, Uy, u)

> Recover the original problem when lim u, =0
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» Introduce a fictitious time step; over-relaxation parameter
connected to the choice of At/ (Az)?



Shooting method

» A shooting strategy involves converting the boundary-
value problem to a related initial value problem

u' = F(u,u,x) . u' = F(u,u,x)

u(a), u(D) u(a) u(b)

» Forward infegrate assuming a derivative g = v'(a)
» Yields a 1-parameter family of solutions w(z: ¢)

» Unique solution fo the boundary-value problem
corresponds fo the root of G(g) = u(b) — u(b; g)



Shooting method

G(g) <0

» Apply root finding
algorithms to G




