Boundary-value problems

Phys 750 Lecture 8

Boundary-value problems

- Important class of problems in physics: differential equations with solutions having specified conditions ot the boundaries
- For example,
- Electrostatic potentials
- Normal modes in wave problems

$$
\begin{aligned}
& \forall x \in \mathcal{R}: \\
& u^{\prime \prime}(x)=F\left(u(x), u^{\prime}(x) ; x\right) \\
& \forall x \in \partial \mathcal{R}: \\
& u(x)=\alpha(x) \text { or } \\
& \frac{u^{\prime}(x)=\beta(x)}{\uparrow} \quad \text { Dirichlet } \\
& \text { Neumann }
\end{aligned}
$$

- Heat flow

Boundary-value problems

- Electric potential produced by a distribution of static charges is described by the Poisson equation:

$$
\nabla^{2} \phi=\left(\frac{\partial^{2}}{\partial x}+\frac{\partial^{2}}{\partial y}+\frac{\partial^{2}}{\partial z}\right) \phi(x, y, z)=\rho(x, y, z)
$$

- Or, in free space, by the Laplace equation:

$$
\nabla^{2} \phi=\left(\frac{\partial^{2}}{\partial x}+\frac{\partial^{2}}{\partial y}+\frac{\partial^{2}}{\partial z}\right) \phi(x, y, z)=0
$$

- Must be augmented by specific values of the potential and electric field (ϕ and $\vec{E}=-\vec{\nabla} \phi$) at the boundaries

Boundary-value problems

- Boundary-value ODEs also arise if we solve for the normal modes of time-dependent partial-differential equations (PDEs)

$$
\frac{\partial u}{\partial t}=u_{x x}(x, t)-F\left(u(x, t), u_{x}(x, t) ; x\right)
$$

- Connected by a Fourier transform in the time coordinate:

$$
\begin{aligned}
u(x, t) & =\int d \omega u_{\omega}(x) e^{i \omega t} \\
u_{\omega}^{\prime \prime}(x) & =F\left(u_{\omega}(x), u_{\omega}^{\prime}(x) ; x\right)-i \omega u_{\omega}
\end{aligned}
$$

Boundary-value problems

- Familiar analytical approach is to expand the solution using special functions: (sinusoidal or Bessel functions, cylindrical or spherical harmonics)
- The goal of such spectral methods is to decompose the solution in a complete set of functions that automatically satisfy the given boundary conditions
- Only convenient in situations with high symmetry (e.g., sphere, cylinder, or box)

Discretization

boundary points
(fixed)

- For regions with no special symmetry, we have to resort to finite-difference methods
interior points
(variable)

Discretization

- Generalize spatial derivatives to multiple dimensions

$$
\begin{aligned}
& u_{x x} \approx \frac{1}{(\Delta x)^{2}}\left[u\left(x_{i-1}\right)-2 u\left(x_{i}\right)+u\left(x_{i+1}\right)\right] \\
& \text { Nearest } \\
& \text { neighbour count } \\
& u_{x x}+u_{y y} \approx \frac{1}{(\Delta x)^{2}}\left[u\left(x_{i-1}, y_{j}\right)+u\left(x_{i+1}, y_{j}\right)\right. \\
& \left.+u\left(x_{i}, y_{j-1}\right)+u\left(x_{i}, y_{j+1}\right)-4 u\left(x_{i}\right)\right] \\
& \nabla^{2} u \approx \frac{1}{(\Delta x)^{2}}\left(\sum_{\vec{\eta}} u(\vec{r}+\vec{\eta})-N_{\mathrm{nn}} u(\vec{r})\right)
\end{aligned}
$$

Discretization

- Discretized ODEs are linear; equivalent to a linear system of equations $M_{\alpha, \beta} U_{\beta}=A_{\beta}$
- Unified index: $\quad U_{\alpha}=u\left(x_{i}, y_{j}, z_{k}\right) \equiv u_{i, j, k}$

$$
\alpha(i, j, k)=i+L j+L^{2} k \quad(L \times L \times L \text { box })
$$

- Solution possible via matrix inversion $U=M^{-1} A$
- Method scales badly: vector size $\sim 1 /(\Delta x)^{3} \sim L^{3}$, matrix storage $\sim L^{6}$, matrix inversion complexity $\sim L^{9}$

Relaxation methods

Given

$$
u_{x x}=\rho(x)
$$

Discrete mesh of points:

$$
u_{i}=u\left(x_{i}\right)=u(a+i(b-a) / L)
$$

Fix two of

$$
\begin{aligned}
& u(a), u^{\prime}(a) \\
& u(b), u^{\prime}(b)
\end{aligned}
$$

$$
u_{0}=u(a)^{\prime}
$$

Relaxation methods

- Jacobi method algorithm:
- Set the fixed u_{i} along the boundaries
- Loop though all interior points x_{i}

$$
\begin{aligned}
& - \text { Set } u_{i}^{\text {new }}=\frac{1}{2}\left(u_{i+1}^{\text {old }}+u_{i-1}^{\text {old }}+(\Delta x)^{2} \rho_{i}\right) \\
& - \text { Keep track of largest } \Delta u=\left|u_{i}^{\text {new }}-u_{i}^{\text {old }}\right|
\end{aligned}
$$

- Repeat until $\Delta u<\epsilon$

Relaxation methods

- Various update orderings (with different convergence properties!) are possible

Checker-board

Gauss-Seidel

Relaxation methods

- Slow convergence since it takes many steps for changes to propagate across the grid
- Better resolution ($\Delta x \rightarrow 0$) means that the length scale for propagation increases ($L=1 / \Delta x \rightarrow \infty$)
- Might try to reweight so that new values incorporate more of the changes from neighbouring points:

$$
\begin{aligned}
u^{\mathrm{new}} & =\alpha \bar{u}+(1-\alpha) u \\
\bar{u}(\vec{r}) & =\frac{1}{N_{\mathrm{nn}}} \sum_{\eta} u(\vec{r}+\vec{\eta})
\end{aligned}
$$

$$
\alpha=1 \text { Jacobi }
$$

$$
0<\alpha<1 \text { Underrelaxation }
$$

$$
1<\alpha<2 \text { Overrelaxation }
$$

Relaxation methods

- Overrelaxation can be connected to the corresponding time-dependent diffusion problem

$$
u_{t}=u_{x x}+u_{y y}-F\left(u_{x}, u_{y}, u\right)
$$

- Recover the original problem when $\lim _{t \rightarrow \infty} u_{t}=0$

$$
u_{i, j}^{(n+1)}=u_{i, j}^{(n)}+(\Delta t)\left(\frac{u_{i+1, j}^{(n)}+u_{i, j+1}^{(n)}-4 u_{i, j}^{(n)}+u_{i-1, j}^{(n)}+u_{i, j 1}^{(n)}}{(\Delta x)^{2}}-\rho_{i, j}\right)
$$

- Introduce a fictitious time step; over-relaxation parameter connected to the choice of $\Delta t /(\Delta x)^{2}$

Shooting method

- A shooting strategy involves converting the boundaryvalue problem to a related initial value problem

$$
\begin{gathered}
u^{\prime \prime}=F\left(u, u^{\prime}, x\right) \\
u(a), u(b)
\end{gathered} \rightarrow \begin{gathered}
u^{\prime \prime}=F\left(u, u^{\prime}, x\right) \\
u(a)
\end{gathered}
$$

- Forward integrate assuming a derivative $g=u^{\prime}(a)$
- Yields a l-parameter family of solutions $u(x ; g)$
- Unique solution to the boundary-value problem corresponds to the root of $G(g)=u(b)-u(b ; g)$

Shooting method

