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Boundary-value problems
‣ Important class of problems in physics: 

differential equations with solutions 
having specified conditions at the 
boundaries 

‣ For example, 

‣ Electrostatic potentials 

‣ Normal modes in wave problems 

‣ Heat flow 

u��(x) = F (u(x), u�(x);x)
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Boundary-value problems
‣ Electric potential produced by a distribution of static 

charges is described by the Poisson equation: 
 

‣ Or, in free space, by the Laplace equation: 
 

‣ Must be augmented by specific values of the potential 
and electric field (    and                   ) at the boundaries
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Boundary-value problems
‣ Boundary-value ODEs also arise if we solve for the 

normal modes of time-dependent partial-differential 
equations (PDEs)  
 

‣ Connected by a Fourier transform in the time coordinate:
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Boundary-value problems
‣ Familiar analytical approach is to expand the solution 

using special functions: (sinusoidal or Bessel functions, 
cylindrical or spherical harmonics) 

‣ The goal of such spectral methods is to decompose the 
solution in a complete set of functions that automatically 
satisfy the given boundary conditions 

‣ Only convenient in situations with high symmetry (e.g., 
sphere, cylinder, or box)



Discretization

‣ For regions with no special 
symmetry, we have to resort to 
finite-difference methods 

interior points 
(variable)

boundary points 
(fixed)



Discretization
‣ Generalize spatial derivatives to multiple dimensions
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Discretization
‣ Discretized ODEs are linear; equivalent to a linear system 

of equations 

‣ Unified index:  
 

‣ Solution possible via matrix inversion 

‣ Method scales badly: vector size                               ,  
matrix storage          , matrix inversion complexity 
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Relaxation methods

�x

ui = u(xi) = u(a + i(b� a)/L)

u0 = u(a)

u1 = u0 + u�(a)�x

uL = u(b)

uL�1 = uL � u⇥(b)�x

u(a), u�(a)

u(b), u�(b)

Given Discrete mesh of points:

Converge via iteration?:
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Relaxation methods
‣ Jacobi method algorithm:

• Set the fixed ui along the boundaries

• Loop though all interior points xi

– Set unew
i = 1

2 (uold
i+1 + uold

i�1 + (�x)2⇥i)
– Keep track of largest �u = |unew
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i |

• Repeat until �u < �



Relaxation methods

...

‣ Various update orderings (with different convergence 
properties!) are possible

Jacobi

Gauss-Seidel

Checker-board



Relaxation methods
‣ Slow convergence since it takes many steps for changes to 

propagate across the grid 

‣ Better resolution (               ) means that the length scale 
for propagation increases (                              ) 

‣  Might try to reweight so that new values incorporate 
more of the changes from neighbouring points:
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Relaxation methods
‣ Overrelaxation can be connected to the corresponding 

time-dependent diffusion problem 

‣ Recover the original problem when 

‣ Introduce a fictitious time step; over-relaxation parameter 
connected to the choice of 
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Shooting method
‣ A shooting strategy involves converting the boundary-

value problem to a related initial value problem  
 
 

‣ Forward integrate assuming a derivative 

‣ Yields a 1-parameter family of solutions 

‣ Unique solution to the boundary-value problem 
corresponds to the root of

u�� = F (u, u�, x)
u(a), u(b)

u(x; g)

G(g) = u(b)� u(b; g)

u(a)
u�� = F (u, u�, x)

u(b)

g = u�(a)



Shooting method

G(g) = 0

G(g) < 0

G(g) > 0
u0 = u(a)
u1 = u0 + g�x

‣ Apply root finding 
algorithms to G


