
Ordinary differential equations

Phys 750 Lecture 7

Ordinary Differential Equations
‣ Most physical laws are expressed as differential

equations

‣ These come in three flavours:

‣ initial-value problems

‣ boundary-value problems

‣ eigenvalue problems

Ordinary Differential Equations
‣ Most physical laws are expressed as differential

equations

‣ These come in three flavours:

‣ initial-value problems

‣ boundary-value problems

‣ eigenvalue problems

x�(t) = F (x(t), t)
x(0) = x0

x��(t) = F (x(t), x�(t), t)
x(0) = x0

x�(0) = v0

first order

second order

Ordinary Differential Equations
‣ Most physical laws are expressed as differential

equations

‣ These come in three flavours:

‣ initial-value problems

‣ boundary-value problems

‣ eigenvalue problems

u��(x) = F (u(x), u�(x);x)

⇥x � �R :

⇥x � R :

u(x) = �(x) or
u�(x) = ⇥(x)

Ordinary Differential Equations
‣ Most physical laws are expressed as differential

equations

‣ These come in three flavours:

‣ initial-value problems

‣ boundary-value problems

‣ eigenvalue problems

⇥x � �R :

⇥x � R :

u��(x) = F (u(x), u�(x);x;�)

solutions only
at specific

eigenvalues
u(x) = �(x) or
u�(x) = ⇥(x)

Ordinary Differential Equations
‣ In principle, the initial value problem ODE can be forward

integrated from its specified starting point  
 
 
 

‣ Need to generate a numerical estimate of the integral on
the rhs of the formal solution

dx

dt
= F (x(t), t)

x(0) = x0

x(t) = x0 +
� t

0
dt� F (x(t�), t�)

Ordinary Differential Equations
‣ As usual, we chop the real time variable into discrete time

steps  
 
 
 

‣ If is sufficiently small, then the integral is well-
approximated by a low-order estimate of the area

�t = ti+1 � ti

�t

x(t + �t) = x(t) +
� t+�t

t
dt� F (x(t�), t�)

x(ti+1) = x(ti) +
� ti+1

ti

dt� F (x(t�), t�)

Ordinary Differential Equations
‣ Various first-order approximations:  
 
 
 
where  

‣ The choices of box and trapezoid
integration correspond to the so-
called Euler and Picard methods

t
ti ti+1

F(x(t),t)

t
ti ti+1

F(x(t),t)

“box rule”

“trapezoid rule”

xi+1 = xi + Fi�t

xi+1 = xi +
1
2
�
Fi + Fi+1

⇥
�t

xi = x(ti), Fi = F (x(ti), ti)

missing weight

in the future

Ordinary Differential Equations
‣ Algorithm for the Euler

method is very simple

‣ Accuracy of the method
is low, and large errors
accumulate over time

‣ Not necessarily energy-
conserving

• Set x0 to its initial value

• Step through each ti (i ⇥ 0):

– compute Fi = F (xi, ti)
– xi+1 = xi + Fi�t

– ti+1 = ti + �t

Ordinary Differential Equations
‣ Picard method

requires a self-
consistent solution

‣ Accurate but slow

‣ May not converge
for too large a choice
of time step

• Set x0 to its initial value

• Step through each ti (i ⌅ 0):

– compute Fi = F (xi, ti)
– ti+1 = ti + �t

– compute x(1)
i+1 via Euler

– Loop over k = 1, 2, 3, . . .

⇥ compute F (k)
i+1 = F (x(k)

i+1, ti+1)

⇥ x(k+1)
i+1 = xi + 1

2

�
Fi + F (k)

i+1

⇥
�t

⇥ Exit loop if |x(k+1)
i+1 � x(k)

i+1| < �

– xi+1 = x(kmax)
i+1

Ordinary Differential Equations
‣ Systematic expansion: replace dummy variable by  

and Taylor expand the integrand 
 

‣ Integration over yields  
 

‣ Truncation at first order corresponds to the Euler method

xi+1 = xi + Fi�t +
1
2

⇥
Fi

�F

�x

����
i

+
�F

�t

����
i

⇤
(�t)2 + · · ·

0 < �t < �t

t� = t + �t

F (x(t + �t), t + �t) = F (x(t), t) +
⇤F

⇤x
x�(t)�t +

⇤F

⇤t
�t + O(�t)2

not necessarily
available to us

Ordinary Differential Equations

‣ According to the mean value theorem, an exact truncation
is of the form 

‣ is evaluated at some intermediate point

‣ Ideal value of absorbs all curvature corrections

‣ Possibility of systematic improvements

xi+1 = xi + F (x(�), �)�t, � � [ti, ti+1]

�

F

Ordinary Differential Equations

‣ E.g., second-order Runge-Kutta 
 
 
 
 

‣ local errors at

t
ti

xi

xi

xi+1

xi+1

ti+1

t
ti

t*

x*

ti+1

Euler

Runge-Kutta

O(�t)2

xi+1 = xi + F (x⇤
, t

⇤)�t

x

⇤ = xi +
1

2
F (xi, ti)�t

t

⇤ = ti +
1

2
�t

Runge-Kutta Schemes
‣ Exact evolution over a small time step:

‣ Expand both sides in a small time increment:

partial derivatives

x(t + �t) = x(t) + x�(t)�t +
1
2
x��(t)(�t)2 +

1
6
x���(t) + · · ·

= x(t) + F�t +
1
2
�
Ft + FFx

⇥
(�t)2

+
1
6
�
Ftt + 2FFtx + F 2Fxx + FF 2

x + FtFx

⇥
(�t)3 + · · ·

x(t + �t) = x(t) +
� �t

0
d(�t)F (x(t + �t), t + �t)

Runge-Kutta Schemes
‣ Runge-Kutta ansatz at order :  

‣ Function evaluation at many points in the interval  
 
 
 
 

‣ equations and unknowns

x(t + �t) = x(t) + �1c1 + �2c2 + · · · + �mcm

m m + m(m� 1)/2

m

c1 = (�t)F (x, t)
c2 = (�t)F (x + �21c1, t + �21�t)
c3 = (�t)F (x + �31c1 + �32c2, t + (�31 + �32)�t)
c4 = (�t)F (x + �41c1 + �42c2 + �43c3, t + (�41 + �42 + �43)�t)

...

{�i, ⇥ij}

Second-order ODEs
‣ We have discussed the Euler, Picard, and Runge-Kutta

schemes for integrating the first-order initial value
problem: 

‣ Similar considerations can be applied to the second-order
problem:

x�(t) = F (x(t), t)
x(0) = x0

x��(t) = F (x(t), x�(t), t)
x(0) = x0

x�(0) = v0

Second-order ODEs
‣ Convenient to reinterpret the second-order system as two

coupled first-order equations 
 
 
 

‣ Obvious connection to classical mechanics: velocity
and acceleration model

x��(t) = F (x(t), x�(t), t)
x(0) = x0

x�(0) = v0

v

A

v�(t) = A(x(t), v(t), t)
x�(t) = v(t)
x(0) = x0

v(0) = v0

Second-order ODEs

‣ Naive generalization
of Euler method to
the pair of first
order equations

‣ Some ambiguity in
the labelling of time
steps

• Set x0 and v0 to their initial values

• Step through each ti (i ⇥ 0):

– compute ai = A(xi, vi, ti)
– vi+1 = vi + ai�t

– xi+1 = xi + vi�t

– ti+1 = ti + �t

Could equally read and still be correct to (Euler-Cromer)vi+1 O(�t)

Second-order ODEs
‣ Can achieve higher order algorithms systematically at the

cost of having more time steps involved in each update 
 
 

‣ Adding and subtracting the forward and reverse forms

xi+1 = xi + vi�t +
1
2
ai(�t)2 + O(�t)3

xi�1 = xi � vi�t +
1
2
ai(�t)2 + O(�t)3

vi =
xi+1 � xi�1

�t

xi+1 = 2xi � xi�1 + ai(�t)2

(Verlet method)

Second-order ODEs
‣ Verlet method is more numerically stable than Euler

‣ It is not self-starting: it needs both and

‣ Accuracy can be arbitrarily improved in this way at the
cost of more starting points: , etc.

‣ Fortunately, there is an update rule mathematically
equivalent to Verlet that is self-starting:

xi+1 = xi + vi�t +
1
2
ai(�t)2

vi+1 = vi +
1
2
(ai+1 + ai)�t

(x0, v0) (x�1, v�1)

(x�2, v�2)

(self-starting Verlet)depends on
 onlyxi+1

Second-order ODEs
‣ Runge-Kutta has the advantage of begin self-starting

‣ 4th order Runge-Kutta for Newton’s equations of motion:
k1v = A(xi, vi, ti)�t

k1x = vi�t

k2v = A(xi + 1
2k1x, vi + 1

2k1v, ti + 1
2�t)

k3v = A(xi + 1
2k2x, vi + 1

2k2v, ti + 1
2�t)

k3x =
�
vi + 1

2k2v

⇥
�t

k4v = A(xi + k3x, vi + k3v, ti + �t)

k4x =
�
vi + k3x

⇥
�t

vi+1 = vi + 1
6

�
k1v + 2k2v + 2k3v + k4v

⇥

xi+1 = xi + 1
6

�
k1x + 2k2x + 2k3x + k4x

⇥

