Ordinary differential equations

Phys 750 Lecture 7



Ordinary Ditferential Equations

» Most physical laws are expressed as differential
equations

» These come in three flavours:
» initial-value problems
» houndary-value problems

» eigenvalue problems



Ordinary Ditferential Equations

» Most physical laws are expressed as differential

equations
1 first order

» These come in three flavours: 2 (1) = F(x(t), )
- 0) =
» initial-value problems r(0) = o

» boundary-value problems second order
, 2"(t) = F(x(t),z2'(t), 1)
> eigenvalue problems #(0) = 2o

2’ (0) = vg



Ordinary Ditferential Equations

» Most physical laws are expressed as ditferential

equations

. VreR:
» These come in three flavours:
u'(x) = F(u(x),u'(x); x)

» initial-value problems

» boundary-value problems vz ecor

u(z) = a(x) or

» eigenvalue problems



Ordinary Ditferential Equations

» Most physical laws are expressed as differential

equations
. VreR:
» These come in three flavours: |
W () = F(u(x),u (z);
» initial-value problems /‘
» boundary-value problems vz e or . solutions only

u(z) = oz) or (Ul speciﬂc

» eigenvalue problems V(2) = B(o) eigenvalues



Ordinary Ditferential Equations

» In principle, the initial value problem ODE can be forward
integrated from its specified starting point

T pa(t),t) :

dt > =(t) = xg dt' F(xz(t)),t
e (1 +/O ¢ F(e(t'), ¢

» Need to generate a numerical estimate of the integral on
the rhs of the formal solution



Ordinary Ditferential Equations

» As usual, we chop the real time variable into discrete time
steps At =t —t,

t+ AL
r(t + At) = z(t) + / dt' F(x(t),t")

CIZ(tfH_l) — Qf(tz) —+ /t i+1dt/ F(Qj(tl)’t/)

» It A¢ is sufficiently small, then the integral is well-
approximated by a low-order estimate of the area



Ordinary Ditferential Equations

missing weight
» Various first-order approximations: (). '
Li+1l — Lg —|— F At — -

i " "
Tit1 = Ti + F —I—‘ bOXErUIB
i —>

where  in ihe future” t tit1
ri = z(t;), Fy = F(x(t;), ;)

» The choices of box and trapezoid i E
integration correspond to the so- trapezoid rule

called Euler and Picard methods i —
b tit1




Ordinary Ditferential Equations

» Algorithm for the Euler
method is very simple e Set z to its initial value

» Accuracy of the method e Step through each ¢; (i > 0):
is low, and large errors

. — compute F; = F(x;,t;)
accumulate over time

— Tijq41 = T + F; At
» Not necessarily energy- b =t + AL
conserving



Ordinary Ditferential Equations

e Set xg to its initial value

» Picard method e Step through each ¢; (¢ > 0):
requires a self-. ~ compute Fi = Fzs.1;)
consistent solution b=t A

» Accurate bu’[ slow — compute xz(i)l via Euler

— Loopover k=1,2,3,...
» May not converge

: « compute F\*) = F(z!" s
for too large a choice pute Fi .y = F(z;5, tit)

of fime step A
+ Exit loop if |x§+j1L ) a:,g+)1| < €
()



Ordinary Ditferential Equations

» Systematic expansion: replace dummy variable by
and Taylor expand the integrand ¢ = ¢ + 6t

Fa(t 4+ 66). ¢ + 1) = Fa(t), 1) + o’ ()5t 4 %f 5t + O(6t)?

ox
, , not necessarily
» Integration over 0 < 5t < At yields available to us

1f _oF OF | |
= . |l . | At)? 4+ ...
Li+1 L _I_FzAt'l' QL}?'L O ot Z]( t) +

1

» Truncation at first order corresponds to the Euler method



Ordinary Ditferential Equations

» According to the mean value theorem, an exact fruncation

is of the form
Tit1 = T F(QZ‘(T), T)At, T € [ti, ti_|_1]

» I is evaluated at some intermediate point
» |deal value of ~ absorbs all curvature corrections

» Possibility of systematic improvements



Ordinary Ditferential Equations

» E.g., second-order Runge-Kutta
Li+1 — Lj -+ F(ZI’}*, t*)At

1
LI’J* = T; + §F(£IZZ, ti)At

1
" =t; + = At
_|_2

» local errors at O(At)?

* Li+1




Runge-Kutta Schemes

» Exact evolution over a small time step:
At
r(t + At) = xz(t) + / d(ot) F(z(t + ot),t + ot)
0)
» Expand both sides in a small time increment:

r(t + At) = x(t) + 2’ (t) At + %x”( )(At)? + %w"’(t) 4+

= 2(t)+ FAt + = @+F@ (At)?

—|—6 tt—FzFth\?Z :U:c‘|_FF2_|_Ft At)

partial derivatives




Runge-Kutta Schemes

» Runge-Kutta ansatz af order m:
r(t+ At) = z(t) + arcr + agea + - + e
» Function evaluation at many points in the interval

1= (

9 ( )F(ZIZ -— UV21C1, t —+ VglAt)

C3z = (At)F(ZC T V31C1 T V32Ca, t+ (V31 + V32)At)
1= (AL)F(

T + V4101 + VgaCo + Vyscs, t + (Va1 + vao + va3) Al)

» m equations and m + m(m — 1)/2 unknowns {cvi, v;;}



Second-order ODEs

» We have discussed the Euler, Picard, and Runge-Kutta
schemes for infegrating the first-order initial value

problem: S 0) = Fla(t).
(0) = o
» Similar considerations can be applied to the second-order
problem: 2(t) = F(a(t), 2/ (), 1)
(0) = o



Second-order ODEs

» Convenient to reinterpret the second-order system as two
coupled first-order equations

(
(

-

» Obvious connection to classical mechanics: velocl’ry v
and acceleration model A



Second-order ODEs

» Naive generalization

e Set g and vy to their initial values
of Euler method to

the pair of first e Step through each ¢; (i > 0):

order equations ~ compute a; = A(z;, v, t;)
» Some ambiguity in — Vg1 = v + a; At

the labelling of time — Ty = +@3t

Sieps o tz—l—l —t \

Could equally read v;1 and still be correct to O(A¢) (Euler-Cromer)



Second-order ODEs

» Can achieve higher order algorithms systematically at the
cost of having more fime steps involved in each update

1
Tiv1 = T; + U; At + §ai(At)2 + O(At)?

1
1 = x; — U; At + §ai(At)2 + O(At)?

» Adding and subtracting the forward and reverse forms
Li+1 = 233‘@ — X;—1 + CL@(At)Z

Tip1 — Ti—1 (Verlet method)
At

V; —



Second-order ODEs

» Verlet method is more numerically stable than Euler
» It is not self-starting: it needs both (o, vo) and (z—1,v_1)

» Accuracy can be arbitrarily improved in this way at the
cost of more starting points: (z_2,v_»), efc.

» Fortunately, there is an update rule mathematically
equivalent to Verlet that is self-starting:

1
i+1 = T + 0 At + ~a;(At)°
depends on AR 2a( )
N\

Li+1 Only Vit1 = U; + §_|_ &Z)At

(self-starting Verlet)



Second-order ODEs

» Runge-Kutta has the advantage of begin self-starting

» 4th order Runge-Kutta for Newton's equations of motion:

ki, = A(x;, v, 1) At
ki1, = v; At
koo = A(zi + k14, Vi + Sk1o, ti +
kso = A(z; + 5kow, vi + 3kov, t; +
ks, = (fuz- — %kgv)At
ki = A(z; 4 K3z, v; + ksy, t; + At)
kag = (vi + ksg) At

Vir1 = U + = (k1o + 2koy + 2k3y + Kay)

Tiv1 = T + ¢ (k1z + 2kog + 2k + kay)

N N
> D
™~ S~
N—r" N—r"




