Ordinary differential equations

Phys 750 Lecture 7

Ordinary Differential Equations

- Most physical laws are expressed as differential equations
- These come in three flavours:
- initial-value problems
- boundary-value problems
- eigenvalue problems

Ordinary Differential Equations

- Most physical laws are expressed as differential equations
- These come in three flavours:
- initial-value problems
- boundary-value problems
- eigenvalue problems
first order

$$
\begin{aligned}
x^{\prime}(t) & =F(x(t), t) \\
x(0) & =x_{0}
\end{aligned}
$$

second order

$$
\begin{aligned}
x^{\prime \prime}(t) & =F\left(x(t), x^{\prime}(t), t\right) \\
x(0) & =x_{0} \\
x^{\prime}(0) & =v_{0}
\end{aligned}
$$

Ordinary Differential Equations

- Most physical laws are expressed as differential equations
- These come in three flavours:

$$
\begin{aligned}
& \forall x \in \mathcal{R}: \\
& u^{\prime \prime}(x)=F\left(u(x), u^{\prime}(x) ; x\right)
\end{aligned}
$$

- initial-value problems
- boundary-value problems $\forall x \in \partial \mathcal{R}$:
- eigenvalue problems

$$
\begin{aligned}
u(x) & =\alpha(x) \text { or } \\
u^{\prime}(x) & =\beta(x)
\end{aligned}
$$

Ordinary Differential Equations

- Most physical laws are expressed as differential equations
- These come in three flavours:

$$
\forall x \in \mathcal{R}:
$$

$$
u^{\prime \prime}(x)=F\left(u(x), u^{\prime}(x) ; x ; \lambda\right)
$$

- initial-value problems
- boundary-value problems $\forall x \in \partial \mathcal{R}$:
solutions only
- eigenvalue problems

$$
\begin{aligned}
u(x) & =\alpha(x) \text { or } \begin{array}{c}
\text { at specific } \\
u^{\prime}(x)
\end{array}=\beta(x) \quad \text { eigenvalues }
\end{aligned}
$$

Ordinary Differential Equations

- In principle, the initial value problem ODE can be forward integrated from its specified starting point

$$
\begin{aligned}
\frac{d x}{d t} & =F(x(t), t) \\
x(0) & =x_{0}
\end{aligned} \longrightarrow x(t)=x_{0}+\int_{0}^{t} d t^{\prime} F\left(x\left(t^{\prime}\right), t^{\prime}\right)
$$

- Need to generate a numerical estimate of the integral on the rhs of the formal solution

Ordinary Differential Equations

- As usual, we chop the real time variable into discrete time steps $\Delta t=t_{i+1}-t_{i}$

$$
\begin{aligned}
x(t+\Delta t) & =x(t)+\int_{t}^{t+\Delta t} d t^{\prime} F\left(x\left(t^{\prime}\right), t^{\prime}\right) \\
x\left(t_{i+1}\right) & =x\left(t_{i}\right)+\int_{t_{i}}^{t_{i+1}} d t^{\prime} F\left(x\left(t^{\prime}\right), t^{\prime}\right)
\end{aligned}
$$

- If Δt is sufficiently small, then the integral is wellapproximated by a low-order estimate of the area

Ordinary Differential Equations

 missing weight- Various first-order approximations:

$$
\begin{aligned}
x_{i+1} & =x_{i}+F_{i} \Delta t \\
x_{i+1} & =x_{i}+\frac{1}{2}\left(F_{i}+F_{i+1}\right) \Delta t \\
\text { where } & \text { in the future }
\end{aligned}
$$

$$
x_{i}=x\left(t_{i}\right), F_{i}=F\left(x\left(t_{i}\right), t_{i}\right)
$$

- The choices of box and trapezoid integration correspond to the socalled Euler and Picard methods

$$
F(x(t), t)
$$

Ordinary Differential Equations

- Algorithm for the Euler method is very simple
- Accuracy of the method is low, and large errors accumulate over time
- Not necessarily energyconserving
- Set x_{0} to its initial value
- Step through each $t_{i}(i \geq 0)$:

$$
\begin{aligned}
& - \text { compute } F_{i}=F\left(x_{i}, t_{i}\right) \\
& -x_{i+1}=x_{i}+F_{i} \Delta t \\
& -t_{i+1}=t_{i}+\Delta t
\end{aligned}
$$

Ordinary Differential Equations

- Set x_{0} to its initial value
- Picard method requires a selfconsistent solution
- Accurate but slow
- May not converge for too large a choice of time step
- Step through each $t_{i}(i \geq 0)$:
- compute $F_{i}=F\left(x_{i}, t_{i}\right)$
$-t_{i+1}=t_{i}+\Delta t$
- compute $x_{i+1}^{(1)}$ via Euler
- Loop over $k=1,2,3, \ldots$
* compute $F_{i+1}^{(k)}=F\left(x_{i+1}^{(k)}, t_{i+1}\right)$
$* x_{i+1}^{(k+1)}=x_{i}+\frac{1}{2}\left(F_{i}+F_{i+1}^{(k)}\right) \Delta t$
* Exit loop if $\left|x_{i+1}^{(k+1)}-x_{i+1}^{(k)}\right|<\epsilon$
$-x_{i+1}=x_{i+1}^{\left(k_{\max }\right)}$

Ordinary Differential Equations

- Systematic expansion: replace dummy variable by and Taylor expand the integrand $t^{\prime}=t+\delta t$

$$
F(x(t+\delta t), t+\delta t)=F(x(t), t)+\frac{\partial F}{\partial x} x^{\prime}(t) \delta t+\frac{\partial F}{\partial t} \delta t+O(\delta t)^{2}
$$

- Integration over $0<\delta t<\Delta t$ yields not necessarily

$$
x_{i+1}=x_{i}+F_{i} \Delta t+\frac{1}{2}\left[\left.F_{i} \frac{\partial F}{\partial x}\right|_{i}+\left.\frac{\partial F}{\partial t}\right|_{i}\right](\Delta t)^{2}+\cdots
$$

- Truncation at first order corresponds to the Euler method

Ordinary Differential Equations

- According to the mean value theorem, an exact truncation is of the form

$$
x_{i+1}=x_{i}+F(x(\tau), \tau) \Delta t, \tau \in\left[t_{i}, t_{i+1}\right]
$$

- F is evaluated at some intermediate point
- Ideal value of τ absorbs all curvature corrections
- Possibility of systematic improvements

Ordinary Differential Equations

- E.g., second-order Runge-Kutta

$$
\begin{aligned}
x_{i+1} & =x_{i}+F\left(x^{*}, t^{*}\right) \Delta t \\
x^{*} & =x_{i}+\frac{1}{2} F\left(x_{i}, t_{i}\right) \Delta t \\
t^{*} & =t_{i}+\frac{1}{2} \Delta t
\end{aligned}
$$

- local errors at $\mathrm{O}(\Delta t)^{2}$

Runge-Kutta Schemes

- Exact evolution over a small time step:

$$
x(t+\Delta t)=x(t)+\int_{0}^{\Delta t} d(\delta t) F(x(t+\delta t), t+\delta t)
$$

- Expand both sides in a small time increment:

$$
\begin{gathered}
x(t+\Delta t)=x(t)+x^{\prime}(t) \Delta t+\frac{1}{2} x^{\prime \prime}(t)(\Delta t)^{2}+\frac{1}{6} x^{\prime \prime \prime}(t)+\cdots \\
=x(t)+F \Delta t+\frac{1}{2}\left(F_{t}\right)+F\left(F_{x}\right)(\Delta t)^{2} \\
+\frac{1}{6}\left(F_{t t}+2 F F_{t x}+F^{2} F_{x x}+F F_{x}^{2}+F_{t} F_{x}\right)(\Delta t)^{3}+\cdots \\
\text { partial derivatives }
\end{gathered}
$$

Runge-Kutta Schemes

- Runge-Kutta ansatz at order m :

$$
x(t+\Delta t)=x(t)+\alpha_{1} c_{1}+\alpha_{2} c_{2}+\cdots+\alpha_{m} c_{m}
$$

- Function evaluation at many points in the interval

$$
\begin{aligned}
& c_{1}=(\Delta t) F(x, t) \\
& c_{2}=(\Delta t) F\left(x+\nu_{21} c_{1}, t+\nu_{21} \Delta t\right) \\
& c_{3}=(\Delta t) F\left(x+\nu_{31} c_{1}+\nu_{32} c_{2}, t+\left(\nu_{31}+\nu_{32}\right) \Delta t\right) \\
& c_{4}=(\Delta t) F\left(x+\nu_{41} c_{1}+\nu_{42} c_{2}+\nu_{43} c_{3}, t+\left(\nu_{41}+\nu_{42}+\nu_{43}\right) \Delta t\right)
\end{aligned}
$$

- m equations and $m+m(m-1) / 2$ unknowns $\left\{\alpha_{i}, \nu_{i j}\right\}$

Second-order ODEs

- We have discussed the Euler, Picard, and Runge-Kutta schemes for integrating the first-order initial value problem:

$$
\begin{aligned}
x^{\prime}(t) & =F(x(t), t) \\
x(0) & =x_{0}
\end{aligned}
$$

- Similar considerations can be applied to the second-order problem:

$$
\begin{aligned}
x^{\prime \prime}(t) & =F\left(x(t), x^{\prime}(t), t\right) \\
x(0) & =x_{0} \\
x^{\prime}(0) & =v_{0}
\end{aligned}
$$

Second-order ODEs

- Convenient to reinterpret the second-order system as two coupled first-order equations

$$
\begin{aligned}
x^{\prime \prime}(t) & =F\left(x(t), x^{\prime}(t), t\right) \\
x(0) & =x_{0} \\
x^{\prime}(0) & =v_{0}
\end{aligned} \quad \begin{aligned}
v^{\prime}(t) & =A(x(t), v(t), t) \\
x^{\prime}(t) & =v(t) \\
x(0) & =x_{0} \\
v(0) & =v_{0}
\end{aligned}
$$

- Obvious connection to classical mechanics: velocity v and acceleration model A

Second-order ODEs

- Naive generalization of Euler method to the pair of first order equations
- Some ambiguity in the labelling of time steps
- Set x_{0} and v_{0} to their initial values
- Step through each $t_{i}(i \geq 0)$:

$$
\begin{aligned}
& \text { - compute } a_{i}=A\left(x_{i}, v_{i}, t_{i}\right) \\
& -v_{i+1}=v_{i}+a_{i} \Delta t \\
& -x_{i+1}=x_{i}+\mho_{i} \Delta t \\
& -t_{i+1}=t_{i}+\Delta t
\end{aligned}
$$

Could equally read v_{i+1} and still be correct to $O(\Delta t)$ (Euler-Cromer)

Second-order ODEs

- Can achieve higher order algorithms systematically at the cost of having more time steps involved in each update

$$
\begin{aligned}
& x_{i+1}=x_{i}+v_{i} \Delta t+\frac{1}{2} a_{i}(\Delta t)^{2}+O(\Delta t)^{3} \\
& x_{i-1}=x_{i}-v_{i} \Delta t+\frac{1}{2} a_{i}(\Delta t)^{2}+O(\Delta t)^{3}
\end{aligned}
$$

- Adding and subtracting the forward and reverse forms

$$
\begin{gathered}
x_{i+1}=2 x_{i}-x_{i-1}+a_{i}(\Delta t)^{2} \\
v_{i}=\frac{x_{i+1}-x_{i-1}}{\Delta t}
\end{gathered}
$$

(Verlet method)

Second-order ODEs

- Verlet method is more numerically stable than Euler
- It is not self-starting: it needs both $\left(x_{0}, v_{0}\right)$ and $\left(x_{-1}, v_{-1}\right)$
- Accuracy can be arbitrarily improved in this way at the cost of more starting points: $\left(x_{-2}, v_{-2}\right)$, etc.
- Fortunately, there is an update rule mathematically equivalent to Verlet that is self-starting:
depends on $\frac{x_{i+1}=x_{i}+v_{i} \Delta t+\frac{1}{2} a_{i}(\Delta t)^{2}}{}$
(self-starting Verlet)
x_{i+1} only

$$
v_{i+1}=v_{i}+\frac{1}{2}\left(a_{i+1}+a_{i}\right) \Delta t
$$

Second-order ODEs

- Runge-Kutta has the advantage of begin self-starting
- 4th order Runge-Kutta for Newton's equations of motion:

$$
\begin{aligned}
k_{1 v} & =A\left(x_{i}, v_{i}, t_{i}\right) \Delta t \\
k_{1 x} & =v_{i} \Delta t \\
k_{2 v} & =A\left(x_{i}+\frac{1}{2} k_{1 x}, v_{i}+\frac{1}{2} k_{1 v}, t_{i}+\frac{1}{2} \Delta t\right) \\
k_{3 v} & =A\left(x_{i}+\frac{1}{2} k_{2 x}, v_{i}+\frac{1}{2} k_{2 v}, t_{i}+\frac{1}{2} \Delta t\right) \\
k_{3 x} & =\left(v_{i}+\frac{1}{2} k_{2 v}\right) \Delta t \\
k_{4 v} & =A\left(x_{i}+k_{3 x}, v_{i}+k_{3 v}, t_{i}+\Delta t\right) \\
k_{4 x} & =\left(v_{i}+k_{3 x}\right) \Delta t \\
v_{i+1} & =v_{i}+\frac{1}{6}\left(k_{1 v}+2 k_{2 v}+2 k_{3 v}+k_{4 v}\right) \\
x_{i+1} & =x_{i}+\frac{1}{6}\left(k_{1 x}+2 k_{2 x}+2 k_{3 x}+k_{4 x}\right)
\end{aligned}
$$

