Integration, differentiation,
and root finding

Phys 750 Lecture 6



Numerical integration

» Compute an upproximution to the definite integral

I_/f ) da

» Find area under the curve f () in the interval [a, b]

» Trapezoid Rule: simplest geometric approximation




Numerical integration

» What is the quality of the approximation?

» Construct a power series from the left:

F&) = (@) + @) —a) + 5 (@ - ap? 4 L0

— (@) + f(@)(x —a) + L&z — a’

\

true for some choice of £ € [a, b)

($_a)3_|_...

exact equality



Numerical integration

» Integrating term by term (with 7 = b — a) gives

f(a 2

Livap = f(za’)H | f(zb)H erro>l — Tiyap = O(H?)
= f(za)H + %(f(a) + f’(a)H/sz(f) H2>H




Numerical integration

» How fo improve the estimate?

1. Find an approximation that matches to higher order:
e.q., frapezoid is the best linear fit: Simpson’s rule is
the best quadratic fit through three points
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2. Make 7 small by subdividing the interval



Polynomial fitting

» Newton-Cotes formulas:
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» Polynomial fitting over a uniformly spaced set of points

» At high order, prone to Runge’s phenomenon
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Interpolation error

» Suppose » + 1 ordered points o < 1 < --- < z,,
evaluate fo f(z;) = y;

» Order-n interpolating polynomial satisfying P(z;) = v,
is related to the original function by

(n+1) ()
fa) = Pla)+ oS

for some ¢ € [xo, ;)]



Interpolation error

» Overall fitting error controlled by

n

E = /mndaz e(r)®  e(z) = H(a’; — ;)

1=0
» Formal minimization 6& /0x; = 0 gives

_ f;onda:’ ol [ PR E ;)
fxmondivll Hk;&i(a?/, _ wk)Z
» Chebyshev nodes provide a good approximate solution:
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Integrating piecewise

» Break the integral into v disjoint intervals covering [a, b

b T T T T T T T
I:/f(x)d:v o m
/f da:+/f ) dx + /f

» Treat the infegrals piecewise using, e.g., trapezoid rule

global error: N x O(%f _ O(%)Q

» Becomes exact in the limit v — oc




Romberg integration

» Break the interval [a, b] of width 7 = & — o info 2"
subintervals of width »,, = /2"

» By recursive construction, define

H

Ro,0 = g(f(a) + f(b))

2" —1

1
R0 = 572%_1,0 1+ h, Zl fla+ (2k — D)hy,)
J:

L 4mRn,m—1 _ Rn—l,m—l
B 4m — 1

7zn,m



O O O O O

Romberg integration
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Troublesome cases

» There are additional complications if
» the region of integration is infinite or semi-infinite
» the integrand is otherwise badly behaved: e.g.,
1. it diverges
2. has discontinuities

3. oscillates infinitely often in some finite region



Semi-infinite integral

» Choose a monotonic increasing function ¢ : [0, 0o] — [0, 1]

» 1-1 map between R and the unit interval

» Conventional integration in transformed coordinates:
y; € [0,1] /O dz f(z) = /O dy f(fl((y?/)))

° >
$¢€R+



Nonuniform mesh

» Many problems can be addressed by the proper choice of mesh

» the points @, 1, z2,...,2x_1,b do not have to be
uniformly spaced:

. d @
» Gaussian quadrature / v Zf i
» Clenshaw-Curtis quadrature

» choose an adaptive mesh to keep the piecewise areas
roughly constant



Adaptive mesh

» Adaptive mesh near a singularity:




Numerical Calculus

» Most physical phenomena evolve continuously and are
described in ferms of time rates of change and spafial

gradients >
a, 0 LV, V4, ...
ot’ Ot?
» On the computer we have only floating point

approximations to real numbers and no proper sense of @
continuous function and its derivatives




Numerical Calculus

» Recall: integration can be implemented as a limiting
process of ever smaller discretization

» Numerical differentiation can be done in similar fashion

» E.g., breaking the real line into a fine grid =1, 2, 25, . ..
leads to the lowest-order approximation

/ L f(m - 0x) — f(s)
fiw) = 5290 0T

_f(@ig1) — f(z)

Y

Li+1 — Ly



Numerical Calculus

» We must always consider how the “finite-difference”
scheme scales with the grid spacing 2 = zi41 — 2

» Taylor expansion around =; yields
f(xz'—l—l) — f(ZCz) — f,(.sz)h -+ %f”(xi)hz - %f”’(gji)h?’ + ...

» We find that the error scales rather badly

) =1 (% 179 O(h)

asymmetric



Numerical Calculus

» Instead, expand to the right and left around =
Flaies) = F(@:) + f (@b + 5 /()b
Fia) = F(x:) = @b+ — f"(x)h® + -

» Difference gives the symmetric “three-point formula”

f(xiv1) — fwiz1)
2h

fi(:) = -O(h%)



Numerical Calculus

» Procedure can be generalized to higher order

» A “five-point” formula can be derived by including
expansions for f(z;42), f(zi—2):

F(@isn) = fein) = 20 (z:) + 5 £ (@)h® + O(K)

f(@iv2) — f(wi_2) = 4hf'(2;) + gfm(%)hg T O(h5)

/77

» Eliminating the £ term yields
1

fi(x:) = o7 (fi—Z — 8fi—1 + 8fit1 — fi+2> + O(h°)



Richardson extrapolation

» Method to automate these order-by-order improvements

» Numerical derivatives built from function evaluations
ot 2, x+h, x+h/E, x+h/E2,. .. for £ >1

» Recursive definition:

flx+h) - f@)
h

_ &"DM(h/€) — D™ (h)
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DW(h) =

D(n—l—l) (h)




Numerical Calculus

» The three-point formula is often good enough

» Sometimes necessary to take ~ small rather than to use
f(x) « high-order multi-point finite difference formula

» A common problem is that
high-order formulas are ill-
LTINS defined near boundaries

LT ()

i—4i—2 i 42 i+4



Numerical Calculus

» Finite difference is a well- ok Z' i+2
defined “shift and subtract” 1 -1
operation I -1
- : 1 =2 1
» Derivatives at arbitrary order
have weights that are 1 -2 1
binomial coefficients: 1 -2 1
" 1 -3 3 -1

A"{f@)] = 3o~V () F (oo

k=0



Root finding

» How to find the solution(s) of the equation f(z) = 0?

» Choice of method depends on whether /' (z) is known
analyfically

» It we have knowledge of the derivative, a common and
efficient scheme is the Newton-Raphson method



Root finding

» Suppose there is a root at =" and we guess that its
position Is x.,

» Expansion in ferms of the deviation Az, = z,, — 2T
yields

f(wT) = f(zn) = f(n)Azy + O([Axn]Q) =0
» View approximate solution as a refined guess, =, 1:

f'(zn)




Newton-Raphson iterations

» Example of a successtul ()
Newton-Raphson search

» Each iteration brings us closer
to the frue root

v If () is smooth and the
initial guess is close to the
root, convergence is very fast

lim =z, = ol
n—aoo



Convergence region

» Failure to find the root can
result if the initial guess is
not sufficiently close to the
frue roof

» Linear extrapolation from
the local slope may be a bad
approximation




Convergence region

» The region in which initial

) [, @) f )]

guesses converge to the
correct solution can be
expanded with a quadratic
estimate of the y-oxis
crossing

) L 2(f"(zn))*




Common variants

» Infer the direction from the slope but use a much smaller
step size than demanded by Newton-Raphson

Tntl = Ty — Sgn<;/((x;’))> X h h < f(xn)

» Use a randomly generated distribution of step sizes




