
Integration, differentiation, 
and root finding

Phys 750 Lecture 6



Numerical integration
‣ Compute an approximation to the definite integral 

‣ Find area under the curve          in the interval 

‣ Trapezoid Rule: simplest geometric approximation
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Numerical integration
‣ What is the quality of the approximation? 

‣ Construct a power series from the left:
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Numerical integration
‣ Integrating term by term (with                   ) gives
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Numerical integration
‣ How to improve the estimate? 

1. Find an approximation that matches to higher order: 
e.g., trapezoid is the best linear fit; Simpson’s rule is 
the best quadratic fit through three points 
 
 

2. Make      small by subdividing the interval
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Polynomial fitting
‣ Newton-Cotes formulas:  
 
 
 
 

‣ Polynomial fitting over a uniformly spaced set of points 

‣ At high order, prone to Runge’s phenomenon
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Runge’s phenomenon
original
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Interpolation error
‣ Suppose            ordered points  

evaluate to    

‣ Order-    interpolating polynomial satisfying  
is related to the original function by 
 
 
 
for some  
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Interpolation error
‣ Overall fitting error controlled by 

‣ Formal minimization                       gives  
 

‣ Chebyshev nodes provide a good approximate solution:  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Integrating piecewise
‣ Break the integral into      disjoint intervals covering 

‣ Treat the integrals piecewise using, e.g., trapezoid rule 

‣ Becomes exact in the limit
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Romberg integration
‣ Break the interval          of width                     into       

subintervals of width  

‣ By recursive construction, define
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Romberg integration
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Troublesome cases
‣ There are additional complications if 

‣ the region of integration is infinite or semi-infinite 

‣ the integrand is otherwise badly behaved: e.g., 

1. it diverges 

2. has discontinuities 

3. oscillates infinitely often in some finite region



Semi-infinite integral
‣ Choose a monotonic increasing function  

‣ 1-1 map between        and the unit interval      

‣ E.g., 

‣ Conventional integration in transformed coordinates:
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Nonuniform mesh
‣ Many problems can be addressed by the proper choice of mesh 

‣ the points                                        do not have to be 
uniformly spaced: 

‣ Gaussian quadrature 

‣ Clenshaw-Curtis quadrature 

‣ choose an adaptive mesh to keep the piecewise areas 
roughly constant
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Adaptive mesh

‣ Adaptive mesh near a singularity:  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Numerical Calculus

‣ Most physical phenomena evolve continuously and are 
described in terms of time rates of change and spatial 
gradients 

‣ On the computer we have only floating point 
approximations to real numbers and no proper sense of a 
continuous function and its derivatives
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Numerical Calculus
‣ Recall: integration can be implemented as a limiting 

process of ever smaller discretization 

‣ Numerical differentiation can be done in similar fashion 

‣ E.g., breaking the real line into a fine grid 
leads to the lowest-order approximation
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Numerical Calculus
‣ We must always consider how the “finite-difference” 

scheme scales with the grid spacing 

‣ Taylor expansion around      yields 

‣ We find that the error scales rather badly  
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Numerical Calculus
‣ Instead, expand to the right and left around 
 
 
 

‣ Difference gives the symmetric “three-point formula”
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Numerical Calculus
‣ Procedure can be generalized to higher order 

‣ A “five-point” formula can be derived by including 
expansions for                              :  
 

‣ Eliminating the       term yields
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D
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Richardson extrapolation
‣ Method to automate these order-by-order improvements 

‣ Numerical derivatives built from function evaluations  
at                                                                   for 

‣ Recursive definition: 

x, x+ h, x+ h/�, x+ h/�2, . . .



Numerical Calculus
‣ The three-point formula is often good enough 

‣ Sometimes necessary to take     small rather than to use 
a high-order multi-point finite difference formula
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Numerical Calculus
‣ Finite difference is a well-

defined “shift and subtract” 
operation 

‣ Derivatives at arbitrary order 
have weights that are 
binomial coefficients:
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Root finding

‣ How to find the solution(s) of the equation                 ? 

‣ Choice of method depends on whether           is known 
analytically 

‣ If we have knowledge of the derivative, a common and 
efficient scheme is the Newton-Raphson method
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Root finding
‣ Suppose there is a root at       and we guess that its 

position is 

‣ Expansion in terms of the deviation 
yields 

‣ View approximate solution as a refined guess,          :
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Newton-Raphson iterations
‣ Example of a successful 

Newton-Raphson search 

‣ Each iteration brings us closer 
to the true root 

‣ If          is smooth and the 
initial guess is close to the  
root, convergence is very fast
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Convergence region
‣ Failure to find the root can 

result if the initial guess is 
not sufficiently close to the 
true root 

‣ Linear extrapolation from 
the local slope may be a bad 
approximation
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Convergence region

‣ The region in which initial 
guesses converge to the 
correct solution can be 
expanded with a quadratic 
estimate of the y-axis 
crossing
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Common variants

‣ Infer the direction from the slope but use a much smaller 
step size than demanded by Newton-Raphson 

‣ Use a randomly generated distribution of step sizes

xn+1 := xn � sgn

✓
f(xn)

f

0(xn)

◆
⇥ h

h ⌧
����
f(xn)

f

0(xn)

����


