Integration, differentiation, and root finding

Phys 750 Lecture 6

Numerical integration

- Compute an approximation to the definite integral

$$
I=\int_{a}^{b} f(x) d x
$$

- Find area under the curve $f(x)$ in the interval $[a, b]$
- Trapezoid Rule: simplest geometric approximation

$$
I \approx(b-a) \times \frac{1}{2}(f(b)+f(a))
$$

Numerical integration

- What is the quality of the approximation?
- Construct a power series from the left:

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
$$

$=f(a)+f^{\prime}(a)(x$

Numerical integration

- Integrating term by term (with $H=b-a$) gives

$$
\begin{aligned}
I & =f(a) H+\frac{f^{\prime}(a)}{2!} H^{2}+\frac{f^{\prime \prime}(\xi)}{3!} H^{3} \\
I_{\text {trap }} & =\frac{f(a)}{2} H+\frac{f(b)}{2} H \quad \text { error: } I-I_{\text {trap }}=O \\
& =\frac{f(a)}{2} H+\frac{1}{2}\left(f(a)+f^{\prime}(a) H /+\frac{f^{\prime \prime}(\xi)}{2!} H^{2}\right) H \\
& =f(a) H+\frac{f^{\prime}(a)}{2} H^{2}+\frac{f^{\prime \prime}(\xi)}{8} H^{3}
\end{aligned}
$$

Numerical integration

- How to improve the estimate?

1. Find an approximation that matches to higher order: e.g., trapezoid is the best linear fit; Simpson's rule is the best quadratic fit through three points

$$
\begin{gathered}
I_{\text {Simp }}=\frac{H}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \\
I-I_{\text {Simp }}=O\left(H^{5}\right)
\end{gathered}
$$

2. Make H small by subdividing the interval

Polynomial fitting

- Newton-Cotes formulas:

$$
\begin{aligned}
& \frac{H}{2}(f(b)-f(a)) \\
& \frac{H}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \\
& \frac{H}{8}\left[f(a)+3 f\left(\frac{a+2 b}{3}\right)+3 f\left(\frac{2 a+b}{3}\right)+f(b)\right] \\
& \frac{H}{90}\left[7 f(a)+32 f\left(\frac{3 a+b}{4}\right)+12 f\left(\frac{a+b}{2}\right)+32 f\left(\frac{a+3 b}{4}\right)+7 f(b)\right]
\end{aligned}
$$

- Polynomial fitting over a uniformly spaced set of points
- At high order, prone to Runge's phenomenon

Runge's phenomenon

Interpolation error

- Suppose $n+1$ ordered points $x_{0}<x_{1}<\cdots<x_{n}$ evaluate to $f\left(x_{i}\right)=y_{i}$
- Order- n interpolating polynomial satisfying $P\left(x_{i}\right)=y_{i}$ is related to the original function by

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

for some $\xi \in\left[x_{0}, x_{n}\right]$

Interpolation error

- Overall fititing error controlled by

$$
\mathcal{E}=\int_{x_{0}}^{x_{n}} d x \epsilon(x)^{2} \quad \epsilon(x)=\prod_{i=0}^{n}\left(x-x_{i}\right)
$$

- Formal minimization $\partial \mathcal{E} / \partial x_{i}=0$ gives

$$
x_{i}=\frac{\int_{x_{0}}^{x_{n}} d x^{\prime} x^{\prime} \prod_{j \neq i}\left(x^{\prime}-x_{j}\right)^{2}}{\int_{x_{0}}^{x_{n}} d x^{\prime \prime} \prod_{k \neq i}\left(x^{\prime \prime}-x_{k}\right)^{2}}
$$

- Chebyshev nodes provide a good approximate solution:

$$
x_{i}=\frac{1}{2}\left[x_{0}+x_{n}-\left(x_{n}-x_{0}\right) \cos \left(\frac{(i+1 / 2) \pi}{n+1}\right)\right]
$$

Integrating piecewise

- Break the integral into N disjoint intervals covering $[a, b]$

$$
\begin{aligned}
I & =\int_{a}^{b} f(x) d x \\
& =\int_{a}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{N-1}}^{b} f(x) d x
\end{aligned}
$$

- Treat the integrals piecewise using, e.g., trapezoid rule

$$
\text { global error: } N \times O\left(\frac{H}{N}\right)^{3}=O\left(\frac{1}{N}\right)^{2}
$$

- Becomes exact in the limit $N \rightarrow \infty$

Romberg integration

- Break the interval $[a, b]$ of width $H=b-a$ into 2^{n} subintervals of width $h_{n}=H / 2^{n}$
- By recursive construction, define

$$
\begin{aligned}
\mathcal{R}_{0,0} & =\frac{H}{2}(f(a)+f(b)) \\
\mathcal{R}_{n, 0} & =\frac{1}{2} \mathcal{R}_{n-1,0}+h_{n} \sum_{j=1}^{2^{n}-1} f\left(a+(2 k-1) h_{n}\right) \\
\mathcal{R}_{n, m} & =\frac{4^{m} \mathcal{R}_{n, m-1}-\mathcal{R}_{n-1, m-1}}{4^{m}-1}
\end{aligned}
$$

Romberg integration

Troublesome cases

- There are additional complications if
- the region of integration is infinite or semi-infinite
- the integrand is otherwise badly behaved: e.g.,

1. it diverges
2. has discontinuities
3. oscillates infinitely often in some finite region

Semi-infinite integral

- Choose a monotonic increasing function $\phi:[0, \infty] \rightarrow[0,1]$
- 1-1 map between \mathbb{R}^{+}and the unit interval
- E.g., $y=\phi(x)=\frac{x}{1+x}, \quad x=\phi^{-1}(y)=\frac{y}{1-y}$
- Conventional integration in transformed coordinates:

Nonuniform mesh

- Many problems can be addressed by the proper choice of mesh
- the points $a, x_{1}, x_{2}, \ldots, x_{N-1}, b$ do not have to be uniformly spaced:
- Gaussian quadrature $\quad \int d x f(x) \doteq \sum_{i} f\left(x_{i}\right) w_{i}$
- Clenshaw-Curtis quadrature
- choose an adaptive mesh to keep the piecewise areas roughly constant

Adaptive mesh

- Adaptive mesh near a singularity:

- Rule of thumb: $\left(x_{i+1}-x_{i}\right) \times \frac{1}{2}\left(f\left(x_{i}\right)+f\left(x_{i+1}\right)\right) \approx$ const.

Numerical Calculus

- Most physical phenomena evolve continuously and are described in terms of time rates of change and spatial gradients

$$
\frac{\partial}{\partial t}, \frac{\partial^{2}}{\partial t^{2}}, \vec{\nabla}, \nabla^{2}, \ldots
$$

- On the computer we have only floating point approximations to real numbers and no proper sense of a continuous function and its derivatives

Numerical Calculus

- Recall: integration can be implemented as a limiting process of ever smaller discretization
- Numerical differentiation can be done in similar fashion
- E.g., breaking the real line into a fine grid $x_{1}, x_{2}, x_{3}, \ldots$ leads to the lowest-order approximation

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & =\lim _{\delta x \rightarrow 0} \frac{f\left(x_{i}+\delta x\right)-f\left(x_{i}\right)}{\delta x} \\
& \approx \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}
\end{aligned}
$$

Numerical Calculus

- We must always consider how the "finite-difference" scheme scales with the grid spacing $h=x_{i+1}-x_{i}$
- Taylor expansion around x_{i} yields

$$
f\left(x_{i+1}\right)-f\left(x_{i}\right)=f^{\prime}\left(x_{i}\right) h+\frac{1}{2!} f^{\prime \prime}\left(x_{i}\right) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+\cdots
$$

- We find that the error scales rather badly

$$
f^{\prime}\left(x_{i}\right)=\frac{f(x(i+1)-f(x i)}{\sum_{\text {asymmetric }}^{h} / O(h)}
$$

Numerical Calculus

- Instead, expand to the right and left around x_{i}

$$
\begin{aligned}
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{1}{2!} f^{\prime \prime}\left(x_{i}\right) h^{2}+\cdots \\
& f\left(x_{i-1}\right)=f\left(x_{i}\right)-f^{\prime}\left(x_{i}\right) h+\frac{1}{2!} f^{\prime \prime}\left(x_{i}\right) h^{2}+\cdots
\end{aligned}
$$

- Difference gives the symmetric "three-point formula"

$$
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i-1}\right)}{2 h}+O\left(h^{2}\right)
$$

Numerical Calculus

- Procedure can be generalized to higher order
- A "five-point" formula can be derived by including expansions for $f\left(x_{i+2}\right), f\left(x_{i-2}\right)$:

$$
\begin{aligned}
& f\left(x_{i+1}\right)-f\left(x_{i-1}\right)=2 h f^{\prime}\left(x_{i}\right)+\frac{1}{3} f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+O\left(h^{5}\right) \\
& f\left(x_{i+2}\right)-f\left(x_{i-2}\right)=4 h f^{\prime}\left(x_{i}\right)+\frac{8}{3} f^{\prime \prime \prime}\left(x_{i}\right) h^{3}+O\left(h^{5}\right)
\end{aligned}
$$

- Eliminating the $f^{\prime \prime \prime}$ term yields

$$
f^{\prime}\left(x_{i}\right)=\frac{1}{12 h}\left(f_{i-2}-8 f_{i-1}+8 f_{i+1}-f_{i+2}\right)+O\left(h^{5}\right)
$$

Richardson extrapolation

- Method to automate these order-by-order improvements
- Numerical derivatives built from function evaluations at $x, \quad x+h, \quad x+h / \xi, \quad x+h / \xi^{2}, \ldots$ for $\xi>1$
- Recursive definition:

$$
\begin{aligned}
D^{(1)}(h) & =\frac{f(x+h)-f(x)}{h} \\
D^{(n+1)}(h) & =\frac{\xi^{n} D^{(n)}(h / \xi)-D^{(n)}(h)}{\xi^{n}-1}
\end{aligned}
$$

Numerical Calculus

- The three-point formula is often good enough
- Sometimes necessary to take h small rather than to use $f(x)$ a high-order multi-point finite difference formula
- A common problem is that high-order formulas are illdefined near boundaries

$$
i-4 i-2 \quad i \quad i+2 i+4
$$

Numerical Calculus

- Finite difference is a well-

$$
{ }^{i-3}{ }_{i-2}{ }^{i-1} i^{i+1}{ }_{i+2}{ }^{i+3}
$$ defined "shift and subtract" operation

- Derivatives at arbitrary order have weights that are binomial coefficients:

$$
\Delta^{n}\left[f\left(x_{i}\right)\right]=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} f\left(x_{i+n-2 k}\right)
$$

Root finding

- How to find the solution(s) of the equation $f(x)=0$?
- Choice of method depends on whether $f^{\prime}(x)$ is known analytically
- If we have knowledge of the derivative, a common and efficient scheme is the Newton-Raphson method

Root finding

- Suppose there is a root at x^{\dagger} and we guess that its position is x_{n}
- Expansion in terms of the deviation $\Delta x_{n}=x_{n}-x^{\dagger}$ yields

$$
f\left(x^{\dagger}\right)=f\left(x_{n}\right)-f^{\prime}\left(x_{n}\right) \Delta x_{n}+O\left(\left[\Delta x_{n}\right]^{2}\right)=0
$$

- View approximate solution as a refined guess, x_{n+1} :

$$
x^{\dagger} \approx x_{n+1} \equiv x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Newton-Raphson iterations

- Example of a successful Newton-Raphson search
- Each iteration brings us closer to the true root
- If $f(x)$ is smooth and the initial guess is close to the root, convergence is very fast

$$
f(x)
$$

Convergence region

- Failure to find the root can result if the initial guess is not sufficiently close to the true root
- Linear extrapolation from the local slope may be a bad approximation

Convergence region

Common variants

- Infer the direction from the slope but use a much smaller step size than demanded by Newton-Raphson

$$
x_{n+1}:=x_{n}-\operatorname{sgn}\left(\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right) \times h \quad h \ll\left|\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right|
$$

- Use a randomly generated distribution of step sizes

