
Floating-point numbers

Phys 750 Lecture 5



Random walk CA
• Activate a single cell at site i = 0

• For all subsequent times steps,

let the active site wander to

i := i±1 with equal probability



Random walk CA
‣ Q: If we run this model M times, how often is the 

activated cell found at position i after 25, 100 , 400, 
1600 , 4800 steps? 

‣ Empirical test: let’s allocate storage for a histogram:

unsigned long int hist25[51];
unsigned long int hist100[201];
unsigned long int hist400[801];
unsigned long int hist1600[3201];
unsigned long int hist4800[9601];

2N+1 elementsN steps



Random walk CA

int main()
{
   for (unsigned long int m = 0; m < M; ++m)
   {
      int x = 0;
      for (int n = 0; n <= 4800; ++n)
        {
            if (R() < 0.5) ++x; else --x;
            if (n == 24 or n == 25) ++hist25[x+25];
            else if (n == 99 or n == 100) ++hist100[x+100];
            else if (n == 399 or n == 400) ++hist400[x+400];
            else if (n == 1599 or n == 1600) ++hist1600[x+1600];
            else if (n == 4799 or n == 4800) ++hist4800[x+4800];
        }
    }

‣ Then accumulate values in the arrays:

watch the
offset!



Position histograms
...

‣ Results for M = 500 000
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Asymptotic distribution

after rescaling, 
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Asymptotic distribution
‣ In the double limit                   , the rescaled histogram is 

a perfect gaussian (normal distribution) 

‣ Amazingly, a smooth, continuous distribution can result 
from a limiting sequence of discrete histograms 

‣ Analogue of coarse-graining 

‣ Rescaling implicitly turns integers into fractions; suggests 
that we can use rational numbers to cover the real line

N,M ! •



Floating-point numbers
‣ Floating-point numbers have the form 
 
 

‣ The adjustable radix point allows for calculation over a 
wide range of magnitudes 

‣ Floating-point numbers are limited by the number of bits 
used to represent the fraction and exponent

fraction (or significand)

sign

base

exponent
± f �be



Floating-point numbers

‣ Real line is dense and uncountably infinite:  
 
 

‣ FP scheme gives a partial covering:
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Floating-point numbers
‣ Finite representation that manages to span many orders 

of magnitude 

‣ A sort of finite-precision scientific notation, with the 
significant and exponent encoded in fixed width binary 

‣ Equal number of uniformly spaces values in each  
interval  

‣ Relies on special values (+0, −0, inf, −inf, NaN)

[2n,2n+1)



Floating point types

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

float

‣ Intel architecture follows the IEEE 754 standard

8-bit exponent field 23-bit fraction field

sign bit

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0

double

11-bit exponent field 52-bit fraction field

sign bit



Floating point types

0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

float

‣ Representation of unity: 

offset by 28−1 leading order 1 is hidden

sign bit

0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0

double

offset by 211−1

sign bit



Floating point types

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

float

‣ Largest positive number:

all on state is reserved

sign bit

0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111 1 1 1 1 1 ... 1

double

all on state is reserved

sign bit

leading order 1 is hidden



Floating point types

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

float

‣ Smallest positive non-denormalized number:

all off state is reserved

sign bit

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0

double

all off state is reserved

sign bit

leading order 1 is hidden



Floating point types

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

float

‣ Largest positive denormalized number:

denormalized

sign bit

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1111 1 1 1 1 1 1 1111111111 1 ... 1

double

denormalized

sign bit

leading order 0 is hidden



Floating point types

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

float

‣ Negative zero:

denormalized

sign bit

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 0

double

denormalized

sign bit

leading order 0 is hidden



Accuracy of FP arithmetic
‣ FP arithmetic is by its nature inexact 

‣ Important always to think about accuracy: should we 
believe the computer’s final answer? 

‣ FP multiplication is relatively safe 

‣ FP subtraction of nearly-equal quantities (or addition of 
equal magnitude, opposite sign quantities) can 
dramatically increase the relative error



Potential dangers

‣ FP operations can yield both “overflow” and “underflow”  

‣ Additional notes on the class web site will explore the 
Infinity (Inf) and Not-a-Number (NaN) error states



Potential dangers
‣ Associativity breaks down: 

‣ The following 8-digit decimal floating point operation has 
a 5% relative error depending on the order in which 
operations are performed:

(u+ v)+w 6= u+(v+w)

(11111113.+�11111111.)+7.5111111 = 2.0000000+7.511111
= 9.511111

11111113.+(�11111111.+7.511111) = 11111113.+�11111103.
= 10.000000



Potential dangers
‣ The distributive law  
 
 
can also fail badly:

u⇥ (v+w) 6= (u⇥ v)+(u⇥w)

20000.000⇥ (�6.0000000+6.0000003) = 20000.000⇥0.00000030000000
= 0.0060000000

(20000.000⇥�6.0000000)+(20000.000⇥6.0000003) =�120000.00+120000.01
= .01000000



Potential dangers

‣ It can easily occur that 

‣ Hence, variance is not guaranteed to be positive 

‣ Naively calculating the standard deviation can lead to 
your taking the square root of a negative number

2(u2 + v2)< (u+ v)2
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Potential dangers

‣ Many common mathematical relations no longer hold ...

(x+ y)(x� y) = x

2 � y

2

sin

2 q + cos

2 q = 1



“Carefully written programs”

‣ technical meaning: programs that are numerically correct 

‣ this is very difficult to guarantee!



“Carefully written programs”

‣ Which formula should 
we use to compute the 
average of x and y?

1. (x+ y)/2

2. x/2+ y/2

3. x+((y� x)/2)

4. y+((x� y)/2)



“Carefully written programs”

May raise an overflow if x 
and y have the same sign

1. (x+ y)/2

2. x/2+ y/2

3. x+((y� x)/2)

4. y+((x� y)/2)



“Carefully written programs”

May degrade accuracy but 
is safe from overflows

1. (x+ y)/2

2. x/2+ y/2

3. x+((y� x)/2)

4. y+((x� y)/2)



“Carefully written programs”

May raise an overflow if x 
and y have opposite signs

1. (x+ y)/2

2. x/2+ y/2

3. x+((y� x)/2)

4. y+((x� y)/2)



“Carefully written programs”

‣ you want functions that are robust  

‣ give some thought to the rare or extreme cases that may 
cause your function to misbehave 

‣ avoid overflows and underflows 

‣ avoid undefined operations, e.g.,
p
�1,

0
0



“Carefully written programs”

‣ Example: roots of the quadratic equation, 

‣ According to the usual formula, 

‣ Problem can arise if                     so that 

‣ Cancellation can lead to catastrophic loss of significant 
digits: 

ax

2 +bx+ c

x1,2 =
�b±

⇥
b

2 �4ac

2a

b2 � |4ac|
p

b2 �4ac ⇥ |b|

b±|b|
2a

� 0
0



“Carefully written programs”
‣ One possible workaround: use exact algebraic 

manipulations on a per case basis

cancellation no cancellation

x1 =
�b+

p
b

2 �4ac

2a

=
�2c

b+
p

b

2 �4ac

x2 =
�b�

p
b
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2c

�b+
p

b
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“Carefully written programs”
#include <cassert>
#include <cmath>
using std::sqrt; // square root
using std::fabs; // absolute value

void quadratic_roots(double a, double b, double c,         
                     double &x1, double &x2)
{
   const double X2 = b*b-4*a*c;
   assert(X2 >= 0.0);
   const double X = sqrt(X2);
   const double Ym = -b-X;  
   const double Yp = -b+X;
   const double Y = (fabs(Ym) > fabs(Yp) ? Ym : Yp);

   x1 = 2*c/Y;
   x2 = Y/(2*a);
}



“Carefully written programs”

‣ Example: norm of a complex number 

‣ Avoid possible overflow when squaring terms:

z = x+ iy, |z|=
p

x

2 + y

2

|z|= x

p
1+ r

2, r =
y

x

, if |y|< |x|

|z|= y

p
1+ r

2, r =
x

y

, if |x|< |y|



“Carefully written programs”
‣ Evaluation by nested polynomials (Horner’s scheme)

double eval_poly(const double f[], double x, int n)
{
   double val = f[--n];
   do
   {
      val *= x;
      val += f[--n];
   } while (n != 0);
   return val;
}

f (x) = a0 +a1x+a2x

2 +a3x

3 + · · ·a
N

x

N

= a0 + x(a1 + x(a2 + x(a3 + · · ·x(a
N�1 + xa

N

) · · ·)))



“Carefully written programs”
#include <iostream>
using std::cout;
using std::endl;

int main()
{
   // f(x) = 1 + 20x + 9x^2 - 3x^3 
   //          + 5x^4 + 2x^5 + x^6
   double f[7] = { 1, 20, 9, -3, 5, 2, 1 };
   for (int i = 0; i <= 1000; ++i)
   {
      const double x = (i-500)*3.0/500;
      cout << x << "\t" << eval_poly(f,x,7) << endl;
   }
   return 0;
}



“Carefully written programs”

‣ Example: the sinc function 

‣ possible problems as 

‣ workaround: explicit power series expansion

sin(x)
x

x ! 0

sin(x)
x

=
x� x

3

3! +
x

5

5! + · · ·
x

= 1� x

2

3!
+

x

4

5!
+ · · ·

with sensible cutoff



Arbitrary precision arithmetic
‣ scheme for performing operations on integers and 

rational numbers with no rounding, e.g.,  
 

‣ available in symbolic manipulation environments (Maple, 
Mathematica) and “bignum” libraries 

‣ implemented in software; limited by system memory

2153
9932

+
871

7362
=

12250579
36559692


