Floating-point numbers

Phys 750 Lecture 5

Random walk CA

- Activate a single cell at site $i=0$
- For all subsequent times steps, let the active site wander to
$i:=i \pm 1$ with equal probability

Random walk CA

- Q: If we run this model M times, how often is the activated cell found at position i after 25, 100, 400, 1600 , 4800 steps?
- Empirical test: let's allocate storage for a histogram:

```
unsigned long int hist25[51];
unsigned long int hist100[201];
unsigned long int hist400[801];
unsigned long int hist1600[3201];
unsigned long int hist(4800)(9601)];
```


Random walk CA

- Then accumulate values in the arrays:

```
int main()
{
    for (unsigned long int m = 0; m < M; ++m)
    {
        int x = 0;
        for (int n = 0; n <= 4800; ++n)
        {
            if (R() < 0.5) ++x; else --x;
            if (n == 24 or n == 25) ++hist25[x+25];
            else if ( }\textrm{n}==99\mathrm{ or n == 100) ++hist100 x+100];
            else if (n == 399 or n == 400) ++hist400[x+400];
            else if (n == 1599 or n == 1600) ++hist1600[x+1600];
            else if (n == 4799 or n == 4800) ++hist4800[x+4800];
        }
    }
```


Position histograms

- Results for $M=500000$

Asymptotic distribution

Asymptotic distribution

- In the double limit $N, M \rightarrow \infty$, the rescaled histogram is a perfect gaussian (normal distribution)
- Amazingly, a smooth, continuous distribution can result from a limiting sequence of discrete histograms
- Analogue of coarse-graining
- Rescaling implicitly turns integers into fractions; suggests that we can use rational numbers to cover the real line

Floating-point numbers

- Floating-point numbers have the form

- The adjustable radix point allows for calculation over a wide range of magnitudes
- Floating-point numbers are limited by the number of bits used to represent the fraction and exponent

Floating-point numbers

- Real line is dense and uncountably infinite:

- FP scheme gives a partial covering:

Floating-point numbers

- Finite representation that manages to span many orders of magnitude
- A sort of finite-precision scientific notation, with the significant and exponent encoded in fixed width binary
- Equal number of uniformly spaces values in each interval $\left[2^{n}, 2^{n+1}\right.$)
- Relies on special values ($+0,-0$, inf, $-\mathrm{inf}, \mathrm{NaN}$)

Floating point types

- Intel architecture follows the IEEE 754 standard

$\underbrace{000|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0|0| 0 \mid}_{\text {8-bit exponent field }} \quad$ 23-bit fraction field
sign bit double
$000 \mid . . .0$
11-bit exponent field

Floating point types

- Representation of unity:

sign bit
 float
 offset by 2^{8-1}
 leading order 1 is hidden

Floating point types

- Largest positive number:

all on state is reserved
leading order 1 is hidden
sign bit double

all on state is reserved

Floating point types

- Smallest positive non-denormalized number:
sign bit
float
$\underbrace{0.0} 0$
all off state is reserved
leading order 1 is hidden
sign bit double
$00000000000100001010000001000000000000000000000000001000 . . .0$
all off state is reserved

Floating point types

- Largest positive denormalized number:

sign bit double
 denormalized

Floating point types

- Negative zero:

sign bit
 float

sign bit
double
$100000000000010000010000000100000000000000000010000000101 . . .0$
denormalized

Accuracy of FP arithmetic

- FP arithmetic is by its nature inexact
- Important always to think about accuracy: should we believe the computer's final answer?
- FP multiplication is relatively safe
- FP subtraction of nearly-equal quantities (or addition of equal magnitude, opposite sign quantities) can dramatically increase the relative error

Potential dangers

- FP operations can yield both "overflow" and "underflow"
- Additional notes on the class web site will explore the Infinity (Inf) and Nota-Number (NaN) error states

Potential dangers

- Associativity breaks down: $(u+v)+w \neq u+(v+w)$
- The following 8-digit decimal floating point operation has a 5% relative error depending on the order in which operations are performed:

$$
\begin{aligned}
(11111113 .+-11111111 .)+7.5111111 & =2.0000000+7.511111 \\
& =9.511111
\end{aligned}
$$

$$
11111113 .+(-11111111 .+7.511111)=11111113 .+-11111103
$$

$$
=10.000000
$$

Potential dangers

- The distributive law

$$
\begin{aligned}
& \qquad u \times(v+w) \neq(u \times v)+(u \times w) \\
& \text { can also fail badly: } \\
& \begin{aligned}
20000.000 \times(-6.0000000+6.0000003) & =20000.000 \times 0.00000030000000 \\
& =0.0060000000
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
(20000.000 \times-6.0000000)+(20000.000 \times 6.0000003) & =-120000.00+120000.01 \\
& =.01000000
\end{aligned}
$$

Potential dangers

- It can easily occur that $2\left(u^{2}+v^{2}\right)<(u+v)^{2}$
- Hence, variance is not guaranteed to be positive
- Naively calculating the standard deviation can lead to your taking the square root of a negative number

$$
\sigma=\frac{1}{n} \sqrt{n \sum_{k=1}^{n} x_{k}^{2}-\left(\sum_{k=1}^{n} x_{k}\right)^{2}}
$$

Potential dangers

- Many common mathematical relations no longer hold ...

$$
\begin{gathered}
(x+y)(x-y)=x^{2}-y^{2} \\
\sin ^{2} \theta+\cos ^{2} \theta=1
\end{gathered}
$$

"Carefully written programs"

- technical meaning: programs that are numerically correct
- this is very difficult to guarantee!

"Carefully written programs"

1. $(x+y) / 2$
2. $x / 2+y / 2$
3. $x+((y-x) / 2)$

- Which formula should we use to compute the average of x and y ?

"Carefully written programs"

1. $(x+y) / 2$
2. $x / 2+y / 2$
3. $x+((y-x) / 2)$
4. $y+((x-y) / 2)$

May raise an overflow if x and y have the same sign

"Carefully written programs"

1. $(x+y) / 2$
2. $x / 2+y / 2$
3. $x+((y-x) / 2)$

May degrade accuracy but is safe from overflows
4. $y+((x-y) / 2)$

"Carefully written programs"

> 1. $(x+y) / 2$
> 2. $x / 2+y / 2$
3. $x+((y-x) / 2)$
4. $y+((x-y) / 2)$

May raise an overflow if x and y have opposite signs

"Carefully written programs"

- you want functions that are robust
- give some thought to the rare or extreme cases that may cause your function to misbehave
- avoid overflows and underflows
- avoid undefined operations, e.g., $\sqrt{-1}, \frac{0}{0}$

"Carefully written programs"

- Example: roots of the quadratic equation, $a x^{2}+b x+c$
- According to the usual formula, $x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
- Problem can arise if $b^{2} \gg|4 a c|$ so that $\sqrt{b^{2}-4 a c} \approx|b|$
- Cancellation can lead to catastrophic loss of significant digits: $\frac{b \pm|b|}{2 a} \approx \frac{0}{0}$

"Carefully written programs"

- One possible workaround: use exact algebraic manipulations on a per case basis

"Carefully written programs"

```
#include <cassert>
#include <cmath>
using std::sqrt; // square root
using std::fabs; // absolute value
void quadratic_roots(double a, double b, double c,
                        double &x1, double &x2)
{
    const double x2 = b*b-4*a*c;
    assert(X2 >= 0.0);
    const double X = sqrt(X2);
    const double Ym = -b-X;
    const double Yp = -b+X;
    const double Y = (fabs(Ym) > fabs(Yp) ? Ym : Yp);
    x1 = 2*C/Y;
    x2 = Y/(2*a);
}
```


"Carefully written programs"

- Example: norm of a complex number

$$
z=x+i y,|z|=\sqrt{x^{2}+y^{2}}
$$

- Avoid possible overflow when squaring terms:

$$
\begin{aligned}
& |z|=x \sqrt{1+r^{2}}, r=\frac{y}{x}, \text { if }|y|<|x| \\
& |z|=y \sqrt{1+r^{2}}, r=\frac{x}{y}, \text { if }|x|<|y|
\end{aligned}
$$

"Carefully written programs"

- Evaluation by nested polynomials (Horner's scheme)

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots a_{N} x^{N} \\
& =a_{0}+x\left(a_{1}+x\left(a_{2}+x\left(a_{3}+\cdots x\left(a_{N-1}+x a_{N}\right) \cdots\right)\right)\right)
\end{aligned}
$$

```
double eval_poly(const double f[], double x, int n)
{
    double val = f[--n];
    do
    {
        val *= x;
        val += f[--n];
    } while (n != 0);
    return val;
}
```


"Carefully written programs"

```
#include <iostream>
using std::cout;
using std::endl;
int main()
{
    // f(x) = 1 + 20x + 9x^2 - 3x^3
    // + 5x^4 + 2x^5 + x^6
    double f[7] = { 1, 20, 9, -3, 5, 2, 1 };
    for (int i = 0; i <= 1000; ++i)
    {
        const double x = (i-500)*3.0/500;
        cout << x << "\t" << eval_poly(f,x,7) << endl;
    }
    return 0;
}
```


"Carefully written programs"

- Example: the sinc function $\frac{\sin (x)}{x}$
- possible problems as $x \rightarrow 0$
- workaround: explicit power series expansion

$$
\frac{\sin (x)}{x}=\frac{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\cdots
$$

Arbitrary precision arithmetic

- scheme for performing operations on integers and rational numbers with no rounding, e.g.,

$$
\frac{2153}{9932}+\frac{871}{7362}=\frac{12250579}{36559692}
$$

- available in symbolic manipulation environments (Maple, Mathematica) and "bignum" libraries
- implemented in software; limited by system memory

