
Floating-point numbers

Phys 750 Lecture 5

Random walk CA
• Activate a single cell at site i = 0

• For all subsequent times steps,

let the active site wander to

i := i±1 with equal probability

Random walk CA
‣ Q: If we run this model M times, how often is the

activated cell found at position i after 25, 100 , 400,
1600 , 4800 steps?

‣ Empirical test: let’s allocate storage for a histogram:

unsigned long int hist25[51];
unsigned long int hist100[201];
unsigned long int hist400[801];
unsigned long int hist1600[3201];
unsigned long int hist4800[9601];

2N+1 elementsN steps

Random walk CA

int main()
{
 for (unsigned long int m = 0; m < M; ++m)
 {
 int x = 0;
 for (int n = 0; n <= 4800; ++n)
 {
 if (R() < 0.5) ++x; else --x;
 if (n == 24 or n == 25) ++hist25[x+25];
 else if (n == 99 or n == 100) ++hist100[x+100];
 else if (n == 399 or n == 400) ++hist400[x+400];
 else if (n == 1599 or n == 1600) ++hist1600[x+1600];
 else if (n == 4799 or n == 4800) ++hist4800[x+4800];
 }
 }

‣ Then accumulate values in the arrays:

watch the
offset!

Position histograms
...

‣ Results for M = 500 000

80000

0
�100 �50 500 100

N = 25

N = 4800

Asymptotic distribution

after rescaling,
collapses onto

⇥N

⇥ 1
N

2M⇥ e

�x

2/2s
p

ps

Asymptotic distribution
‣ In the double limit , the rescaled histogram is

a perfect gaussian (normal distribution)

‣ Amazingly, a smooth, continuous distribution can result
from a limiting sequence of discrete histograms

‣ Analogue of coarse-graining

‣ Rescaling implicitly turns integers into fractions; suggests
that we can use rational numbers to cover the real line

N,M ! •

Floating-point numbers
‣ Floating-point numbers have the form 
 
 

‣ The adjustable radix point allows for calculation over a
wide range of magnitudes

‣ Floating-point numbers are limited by the number of bits
used to represent the fraction and exponent

fraction (or significand)

sign

base

exponent
± f �be

Floating-point numbers

‣ Real line is dense and uncountably infinite:  
 
 

‣ FP scheme gives a partial covering:

R

inf

NaN

−inf

NaN

[x1,x2] 7! R

x1 x2

�0

+0 · · · 21272221

Floating-point numbers
‣ Finite representation that manages to span many orders

of magnitude

‣ A sort of finite-precision scientific notation, with the
significant and exponent encoded in fixed width binary

‣ Equal number of uniformly spaces values in each  
interval

‣ Relies on special values (+0, −0, inf, −inf, NaN)

[2n,2n+1)

Floating point types

0 0

float

‣ Intel architecture follows the IEEE 754 standard

8-bit exponent field 23-bit fraction field

sign bit

0 ... 0

double

11-bit exponent field 52-bit fraction field

sign bit

Floating point types

0 0 1 1 1 1 1 1 1 0

float

‣ Representation of unity:

offset by 28−1 leading order 1 is hidden

sign bit

0 0 1 1 1 1 1 1 1 1 1 1 0 ... 0

double

offset by 211−1

sign bit

Floating point types

0 1 1 1 1 1 1 1 0 1

float

‣ Largest positive number:

all on state is reserved

sign bit

0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111 1 1 1 1 1 ... 1

double

all on state is reserved

sign bit

leading order 1 is hidden

Floating point types

0 0 0 0 0 0 0 0 1 0

float

‣ Smallest positive non-denormalized number:

all off state is reserved

sign bit

0 0 0 0 0 0 0 0 0 0 0 1 0 ... 0

double

all off state is reserved

sign bit

leading order 1 is hidden

Floating point types

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

float

‣ Largest positive denormalized number:

denormalized

sign bit

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1111 1 1 1 1 1 1 1111111111 1 ... 1

double

denormalized

sign bit

leading order 0 is hidden

Floating point types

1 0

float

‣ Negative zero:

denormalized

sign bit

1 0 ... 0

double

denormalized

sign bit

leading order 0 is hidden

Accuracy of FP arithmetic
‣ FP arithmetic is by its nature inexact

‣ Important always to think about accuracy: should we
believe the computer’s final answer?

‣ FP multiplication is relatively safe

‣ FP subtraction of nearly-equal quantities (or addition of
equal magnitude, opposite sign quantities) can
dramatically increase the relative error

Potential dangers

‣ FP operations can yield both “overflow” and “underflow”

‣ Additional notes on the class web site will explore the
Infinity (Inf) and Not-a-Number (NaN) error states

Potential dangers
‣ Associativity breaks down:

‣ The following 8-digit decimal floating point operation has
a 5% relative error depending on the order in which
operations are performed:

(u+ v)+w 6= u+(v+w)

(11111113.+�11111111.)+7.5111111 = 2.0000000+7.511111
= 9.511111

11111113.+(�11111111.+7.511111) = 11111113.+�11111103.
= 10.000000

Potential dangers
‣ The distributive law  
 
 
can also fail badly:

u⇥ (v+w) 6= (u⇥ v)+(u⇥w)

20000.000⇥ (�6.0000000+6.0000003) = 20000.000⇥0.00000030000000
= 0.0060000000

(20000.000⇥�6.0000000)+(20000.000⇥6.0000003) =�120000.00+120000.01
= .01000000

Potential dangers

‣ It can easily occur that

‣ Hence, variance is not guaranteed to be positive

‣ Naively calculating the standard deviation can lead to
your taking the square root of a negative number

2(u2 + v2)< (u+ v)2

s =
1
n

vuut
n

n

Â
k=1

x

2
k

�
✓

n

Â
k=1

x

k

◆2

Potential dangers

‣ Many common mathematical relations no longer hold ...

(x+ y)(x� y) = x

2 � y

2

sin

2 q + cos

2 q = 1

“Carefully written programs”

‣ technical meaning: programs that are numerically correct

‣ this is very difficult to guarantee!

“Carefully written programs”

‣ Which formula should
we use to compute the
average of x and y?

1. (x+ y)/2

2. x/2+ y/2

3. x+((y� x)/2)

4. y+((x� y)/2)

“Carefully written programs”

May raise an overflow if x
and y have the same sign

1. (x+ y)/2

2. x/2+ y/2

3. x+((y� x)/2)

4. y+((x� y)/2)

“Carefully written programs”

May degrade accuracy but
is safe from overflows

1. (x+ y)/2

2. x/2+ y/2

3. x+((y� x)/2)

4. y+((x� y)/2)

“Carefully written programs”

May raise an overflow if x
and y have opposite signs

1. (x+ y)/2

2. x/2+ y/2

3. x+((y� x)/2)

4. y+((x� y)/2)

“Carefully written programs”

‣ you want functions that are robust

‣ give some thought to the rare or extreme cases that may
cause your function to misbehave

‣ avoid overflows and underflows

‣ avoid undefined operations, e.g.,
p
�1,

0
0

“Carefully written programs”

‣ Example: roots of the quadratic equation,

‣ According to the usual formula,

‣ Problem can arise if so that

‣ Cancellation can lead to catastrophic loss of significant
digits:

ax

2 +bx+ c

x1,2 =
�b±

⇥
b

2 �4ac

2a

b2 � |4ac|
p

b2 �4ac ⇥ |b|

b±|b|
2a

� 0
0

“Carefully written programs”
‣ One possible workaround: use exact algebraic

manipulations on a per case basis

cancellation no cancellation

x1 =
�b+

p
b

2 �4ac

2a

=
�2c

b+
p

b

2 �4ac

x2 =
�b�

p
b

2 �4ac

2a

=
2c

�b+
p

b

2 �4ac

“Carefully written programs”
#include <cassert>
#include <cmath>
using std::sqrt; // square root
using std::fabs; // absolute value

void quadratic_roots(double a, double b, double c,
 double &x1, double &x2)
{
 const double X2 = b*b-4*a*c;
 assert(X2 >= 0.0);
 const double X = sqrt(X2);
 const double Ym = -b-X;  
 const double Yp = -b+X;
 const double Y = (fabs(Ym) > fabs(Yp) ? Ym : Yp);

 x1 = 2*c/Y;
 x2 = Y/(2*a);
}

“Carefully written programs”

‣ Example: norm of a complex number

‣ Avoid possible overflow when squaring terms:

z = x+ iy, |z|=
p

x

2 + y

2

|z|= x

p
1+ r

2, r =
y

x

, if |y|< |x|

|z|= y

p
1+ r

2, r =
x

y

, if |x|< |y|

“Carefully written programs”
‣ Evaluation by nested polynomials (Horner’s scheme)

double eval_poly(const double f[], double x, int n)
{
 double val = f[--n];
 do
 {
 val *= x;
 val += f[--n];
 } while (n != 0);
 return val;
}

f (x) = a0 +a1x+a2x

2 +a3x

3 + · · ·a
N

x

N

= a0 + x(a1 + x(a2 + x(a3 + · · ·x(a
N�1 + xa

N

) · · ·)))

“Carefully written programs”
#include <iostream>
using std::cout;
using std::endl;

int main()
{
 // f(x) = 1 + 20x + 9x^2 - 3x^3
 // + 5x^4 + 2x^5 + x^6
 double f[7] = { 1, 20, 9, -3, 5, 2, 1 };
 for (int i = 0; i <= 1000; ++i)
 {
 const double x = (i-500)*3.0/500;
 cout << x << "\t" << eval_poly(f,x,7) << endl;
 }
 return 0;
}

“Carefully written programs”

‣ Example: the sinc function

‣ possible problems as

‣ workaround: explicit power series expansion

sin(x)
x

x ! 0

sin(x)
x

=
x� x

3

3! +
x

5

5! + · · ·
x

= 1� x

2

3!
+

x

4

5!
+ · · ·

with sensible cutoff

Arbitrary precision arithmetic
‣ scheme for performing operations on integers and

rational numbers with no rounding, e.g.,  
 

‣ available in symbolic manipulation environments (Maple,
Mathematica) and “bignum” libraries

‣ implemented in software; limited by system memory

2153
9932

+
871

7362
=

12250579
36559692

