Floating-point numbers

Phys 750 Lecture 5

Random walk CA

e Activate a single cell at site i =0

e For all subsequent times steps,
let the active site wander to
1 := i+ 1 with equal probability

Random walk CA

» Q: If we run this model A7 times, how often is the

activated cell found at position 7 after 25, 100, 400,
1600 , 4800 steps?

» Empirical test: let's allocate storage for a histogram:

unsigned
unsigned
unsigned
unsigned
unsigned

long
long
long
long
long

int hist25[51];

int hist100[201];
int hist400[801];
int histl1600[3201];

int hist4800)(9601);
N\

/

N steps

2N+ | elements

Random walk CA

» Then accumulate values in the arrays:

int main()

{
for (unsigned long int m = 0; m < M; ++m
{ (unsig ?) watch the
int x = 0; offset!
for (int n = 0; n <= 4800; ++n)
{

if (R() < 0.5) ++x; else --x;

if (n == 24 or n == 25) ++hist25[x+25];

else 1f (n == 99 or n == 100) ++hist100;
else if (n == 399 or n == 400) ++hist400[x+400];
else if (n == 1599 or n == 1600) ++histl1600[x+16007];
else 1f (n == 4799 or n == 4800) ++hist4800[x+4800];

Position histograms

30000 —

N = 4800

—100 —50 0) 50 100

» Results for A7 = 500 000

XN |

Asymptofic distribution

| after rescaling,
| collapses onto

e—x2/26
1 2M X
] vV TO
1
> X —

Asymptofic distribution

» |n the double limit &, 37 — oo, the rescaled histogram is
a perfect gaussian (normal distribution)

» Amazingly, a smooth, continuous distribution can result
from a limiting sequence of discrete histograms

» Analogue of coarse-graining

» Rescaling implicitly furns integers into fractions; suggests
that we can use rational numbers to cover the real line

Floating-point numbers

» Floating-point numbers have the form

sign —_ e exponent

fraction (or signiﬂcund)/ \buse

» The adjustable radix point allows for calculation over
wide range of magnitudes

» Floating-point numbers are limited by the number of bits
used to represent the fraction and exponent

Floating-point numbers

» Real line is dense and uncountably infinite:

X1 X2 R
< o o
x1,x%2] — R
» FP scheme gives a partial covering:
Nﬂ{ 0 2l 22 ... 9127 NJGN
/ —0 f

-inf

Floating-point numbers

» Finite representation that manages to span many orders
of magnitude

» A sort of finite-precision scienfific notation, with the
significant and exponent encoded in fixed width binary

» Equal number of uniformly spaces values in each
interval [27, 27+ 1)

» Relies on special values (+0, -0, inf, =inf, NaN)

Floating point types

» Intel architecture follows the IEEE 754 standard

sign bit float
o|o]o[o[o]o[o[o]o]o]o]o]o[o[o]o]o]o]o]o[o[o]o]o]o]o[o[o]o]o]o0]0
— _J/
"
8-bit exponent field 23-hit fraction field
sign bit double
o|o|o[o[o[o[oo[o]o[o]o[o|o[o[oo[o]o[o]o[o]o[o[o|o]o]o[o]o[o]olo[o]o]o]o]... |0
— _/
"

11-bit exponent field 52-bit fraction field

Floating point types

» Representation of unity:

sign bit float
olo[1]t]t[t]1]1]1]o]o[o]o]o]o[o[o]o]o]o]o[o]o]o]o]o[o[o]o]0]0]0

— _J/

"
offset by 28-1 leading order 1 is hidden

sign bit double
olo[t[t[1]t]t]1]t]1]1]1]o]o]o[o]o[o]o]o[o]o[o]oo[o]olo[o]o[o]o]o[o]o]o]o]...]o

— _/

offsemyf 211~

Floating point types

» Largest positive number:

sign bit float
onaannoonnnnnnooonnnnonnonnnm
all on state is reserved leading order 1 is hidden
sign bit double
sananonoonnoonnpnononononoononononnone
— —~— _/

all on state is reserved

Floating point types

» Smallest positive non-denormalized number:

sign bit float
o|o[o[o[o]o]o[o] o]0 o/o]o]o[o]o[o[o[o|o]o]0
— ~— _J/

all off state is reserved

leading order 1 is hidden

sign bit double
o|o|o[o[o[o[oo|olo[o| 1|0 o|o|o[o[o[o[o[o[oo[olo]o]... |0
— _/

~

all off state is reserved

Floating point types

» Largest positive denormalized number:

sign bit float
o[o[o[olo[ofofofol t[t{t]t{tTelefe]t]alelela] [alalefa] e]i]n

denormalized leading order 0 is hidden
sign bit double
olo[oloo|o[o[olo[oofo] tt{tTt[tTt[t{t[eh Tele{ti[iTepi[el if i defh]...
— —~— _/

denormalized

» Negative zero:

Floating point types

sign bit float
1|o[oo]o[o[oo]o]o o/o|o[o[o[o]o[o[o]o|o]o
— _J/

"z

denormalized

leading order 0 is hidden

sign bit double
1 |o[o]o[o|o[o[oo[olo[o o|o|o[o|o[o[o[o[o[o|o]o|o]...|0
— _/

~

denormalized

Accuracy of FP arithmetic

» FP arithmetic is by its nature inexact

» Important always to think about accuracy: should we
believe the computer’s final answer?

» FP multiplication is relatively safe

» FP subtraction of nearly-equal quantities (or addition of
equal magnitude, opposite sign quantities) can
dramatically increase the relative error

Potential dangers

» FP operations can yield both “overflow” and “underflow”

» Additional notes on the class web site will explore the
Infinity (Inf) and Not-a-Number (NaN) error states

Potential dangers

» Associativity breaks down: (u+v) +w # u+ (v+w)

» The following 8-digit decimal floating point operation has
a 5% relative error depending on the order in which
operations are performed:

(11111113. 4+ —11111111.)4+7.5111111 = 2.0000000+47.511111
=9.511111

11111113+ (—11111111.+7.511111) =11111113. 4+ —-11111103,
= 10.000000

Potential dangers

» The distributive law

uxX (v+w) #£ (uxv)+ (uxw)

can also fail badly:

20000.000 x (—6.0000000 + 6.0000003) = 20000.000 x 0.00000030000000
= (0.0060000000

(20000.000 x —6.0000000) + (20000.000 x 6.0000003) = —120000.00 + 120000.01
= .01000000

Potential dangers

» It can easily occur that 2(u? +v?) < (u+v)?
» Hence, variance is not quaranteed to be positive

» Naively calculating the standard deviation can lead fo
your taking the square root of a negative number

k=1

o = —\nzn:x,% (;xk)z

Potential dangers

» Many common mathematical relations no longer hold ...
(x+y)(x—y) = x> =y’

sin® @ -+ cos® @ = 1

“Carefully written programs”

» technical meaning: programs that are numerically correct

» this is very difficult to guarantee!

“Carefully written programs”

L. (x+y)/2

2. x/24y/2 » Which formula should
we use to compute the

3 x4+ (b=x)/2) average of x and y?

4. y+((x=y)/2)

“Carefully written programs”

L. (x+y)/2 May raise an overflow if x
2. x/2+y/2 and y have the same sign

3. x+ ((y—x)/2)
4. y+((x—y)/2)

“Carefully written programs”

l. (x+y)/2
2. x/2+y/2 May degrade accuracy but
3. x4 ((y—x)/2) is safe from overflows

4. y+((x=y)/2)

“Carefully written programs”

1. (x+y)/2
2. x/24+y/2

3. x+((y—x)/2) May raise an overflow if x
4. y+ ((x—y)/2) and y have opposite signs

“Carefully written programs”

» you want functions that are robust

» give some thought to the rare or extreme cases that may
cause your function to mishehave

» avoid overflows and underflows

0

» avoid undefined operations, e.g., v —1, 0

“Carefully written programs”

» Example: roots of the quadratic equation, ax” +bx + ¢

—b -

:\/b2—4ac

» According to the usual formula, x; » =

2a

» Problem can arise it 52 >> |4ac| so that /b2 — 4ac ~ |b|

» Cancellation can lead fo catastrophic loss of significant

dlgl’lS b+ |b N 9
2a 0

“Carefully written programs”

» One possible workaround: use exact algebraic
manipulations on a per case basis

“ b+ Vb2 —4dac —2c
X1 = —
1 2a b+ VD2 — dac
— —\/b2—4ac_ Tc'\

X — \
i / 2a —b+Vb? J\461(:

cancellation no cancellation

“Carefully written programs”

#include <cassert>

#include <cmath>

using std::sqrt; // square root
using std::fabs; // absolute value

volid quadratic roots(double a, double b, double c,
double &x1, double &x2)
{
const double X2 = b*b-4*a*c;
assert(X2 >= 0.0);
const double X = sqrt(X2);

const double Ym = -b-X;

const double Yp = -b+X;

const double Y = (fabs(Ym) > fabs(Yp) ? Ym : Yp);
x1l = 2*c/Y;

x2 = Y/ (2*a);

“Carefully written programs”

» Example: norm of a complex number

z=x+1iy, |z = Vx> +)?

» Avoid possible overflow when squaring ferms:

1z ZX\/1+r2, r==, if [y| < |x]

IR IR A

2 =yV1+r2, ==, if x| <yl

“Carefully written programs”

» Evaluation by nested polynomials (Horner's scheme)
f(x)=ao+aix+ arx” +azx> + - ayx

= ao +x(ar +x(ax +x(az +---x(ay—1 +xan)---)))

double eval poly(const double f[], double x, int n)
{
double val = f[--n];

do
{

val *= x;

val += f[--n];
} while (n != 0);
return val;

“Carefully written programs”

#include <iostream>
using std::cout;
using std::endl;

int main()

{

20x + 9x72 - 3x"3

// 54 + 2x"5 + x"6

double f[7] {1, 20, 9, -3, 5, 2, 1 };
for (int 1 = 0; i <= 1000; ++1i)

{

// £(x) =1

const double x = (i-500)*3.0/500;
cout << x << "\t" << eval poly(f,x,7) << endl;

}

return 0;

“Carefully written programs”

in(x)
X
» possible problems as x — 0

» Example: the sinc function >

» workaround: explicit power series expansion

, 3,5
sin(x) x—Ftz o+ x> xt

_ ! | —1 | P
X X 3! 5!

with sensible cutoff

Arbitrary precision arithmetic

» scheme for performing operations on integers and
rational numbers with no rounding, e.qg.,

2153 871 12250579
9932 7362 36559692

» available in symbolic manipulation environments (Maple,
Mathematica) and “bignum” libraries

» implemented in software; limited by system memory

