Seli-organized criticality

Phys 750 Lecture 4

Self-organized criticality

» Some characteristics:
» system is marginally stable

» prone fo dramatic avalanche or cascade behaviour af
unpredictable moments

» power-law correlations
related to scale invariance

» fractal size distributions

Self-organized criticality

» Arises in cellular automata for earthquakes, landslides,
snowflakes, epidemics, war, stock markets, ...

» But these models all seem to require some degree of
randomness:

» (A rules themselves have a probabilistic character

» or updates are deterministic but performed
asynchronously on randomly-selected cells

Sandpile model

» Sandpile grows as we drop
additional grains

» Evolves smoothly until a
critical threshold is reached

» Catastrophic rearrangement
plus additional cascading
events

Sandpile CA

choose a cell (x,y) at random

increment its height by one:
h(x,y) == (x,y) +1

if h(x,y) = 4 then set

= h(x,y) =

— h(x+1,y) :==h(x+1,y)+

- h(x—1,y):=h(x—1,y)+
— h(x,y+1):=h(x,y+1)+"
— h(x,y—1):=h(x,y—1)+1

apply the update recursively to every
height-4 neighbour

Sandpile CA

early stages of adding grains dynamical steady state

avalanche

Sandpile CA

dynamical steady state

25 /‘ .

= 2.12 -
O
O 2r —>
qL) —
1.5 —
Q 2.11 -
(0y)
s 1r B .
oS
Eo 0.5 - — 2 9 I Y T N R
054 056 058 0.6
0 I I I I I

0 01 02 03 04 05 06
millions of grains dropped

Distribution functions

» Measure and histogram quantities in the dynamical
steady state:

» number of grains added between avalanche events
» avalanche size
» Most quantities display power-law behaviour

» No fundamental scales in the model

avalanche size

Avalanche distribution

100000

10000 £

1000

100 E

10 &

1 L

O 01 02 03 04 05 0.6
millions of grains dropped

discard data

fraction

Avalanche distribution

1 : I IIIIIIII I IIIIIIII I IIIIIIII I T T TTrrl

0. £(8)=0.11857"

0.01 L

0.001 L

0.0001 |

1 10 100 1000 10000
avalanche size

Cluster growth model

» Apply update rule fo unassigned cells that have activated

neighbours

Off

As yet unassigqed (for all subsequent times)

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o*
.

R SR

J
-
-
J
)
J
-

-

L

J

O .

(for all subsequent times)

Percolation transition

» Stationary final configurations on a 400x400 torus

fractal

Percolation transition

» Criticality here is not self-organized but instead requires
fine tuning of the growth probability p

» Continuous phase transition at p., where the clusters
have fractal dimension intermediate hetween 1 and 2

» Scale invariance is lost at p > pc and p < p.

Fractal dimension

» Bin cell counts in
circular shells

a log-log plot

N ~ RPr
dN ~ RPi—14R

Simple data structure

» 3-state grid of cells stored as conventional 2D array

const size t halfL = 200;

const size t L = 2*halflLl;

enum cell t { UNASSIGNED=2, ON=1, OFF=0 };
cell t grid[L][L];

void initialize grid(void)
{
for (size t 1 = 0; 1 < L; ++1)
for (size t J = 0; J < L; ++3J)
grid[i][j] = UNASSIGNED;
grid[halfL][halfL] = ON;

Simple updates

» Each sweep scales as 22

» As many as L sweeps for the On wavefront to propagate
across the system

double prob;
void sweep grid(void)

{
for (size t 1 = 0; 1 < L; ++1)
for (size t J = 0; J < L; ++3J)

if (grid[i][j] == UNASSIGNED and
(grid[(1+1)%L][]J] == ON or
grid[(L+i-1)%L][]J] == ON or
grid[i][(J+t1)%L] == ON or
grid[i][(L+J-1)%L] == ON))

grid[i][]J] = (Rand() < prob ? ON : OFF);

Redundant data structure

» Trade off memory for algorithmic efficiency

const size t halflL = 200;

const size t L = 2*halfL;

enum cell t { UNASSIGNED = 2, ON = 1, OFF
cell t grid[L][L];

0 };

class coord
{ public:
size t x;
size t y;
coord(size t x , size t vy) : x(x), v(vy_) {}

}i

#include <queue>
using std::queue;
queue<coord> perim;

Initialize the perimeter

volid initialize grid(void)
{
for (size t 1 = 0; 1 < L; ++1)
for (size t j 0; J < L; ++3)
grid[i][j] = UNASSIGNED;
grid[halfL][halfL] = ON;
perim.push(coord(halfL+1,halflL));
perim.push(coord(halfL-1,halflL));
perim.push(coord(halfL,halflL+1));
perim.push(coord(halfL,halfl-1));

” e

Grow the perimeter

double prob;
void sweep grid(void)
{
while (!perim.empty())
{
const coord ¢ = perim.front(); perim.pop();
const size t i = c.x;
const size t j = c.y;
if (grid[i][j] == UNASSIGNED)
if (Rand() < prob)
{
grid[i][J] = ON;
if (grid[(i+1)%L][]J] == UNASSIGNED) perim.push(coord((i+1)%L,]j));
if (grid[(L+i-1)%L][J] == UNASSIGNED) perim.push(coord((L+i-1)%L,J));
if (grid[i][(J+1)%L] == UNASSIGNED) perim.push(coord(i, (j+1)%L));
if (grid[i][(L+J-1)%L] == UNASSIGNED) perim.push(coord(i, (L+J-1)%L));
}
else
grid[i][]J] = OFF;

