
Self-organized criticality

Phys 750 Lecture 4

Self-organized criticality
‣ Some characteristics:

‣ system is marginally stable

‣ prone to dramatic avalanche or cascade behaviour at
unpredictable moments

‣ power-law correlations

‣ fractal size distributions
related to scale invariance

Self-organized criticality
‣ Arises in cellular automata for earthquakes, landslides,

snowflakes, epidemics, war, stock markets, ...

‣ But these models all seem to require some degree of
randomness:

‣ CA rules themselves have a probabilistic character

‣ or updates are deterministic but performed
asynchronously on randomly-selected cells

Sandpile model
‣ Sandpile grows as we drop

additional grains

‣ Evolves smoothly until a
critical threshold is reached

‣ Catastrophic rearrangement
plus additional cascading
events

q < qc

q > qc

Sandpile CA
• choose a cell (x,y) at random

• increment its height by one:

h(x,y) := (x,y)+1

• if h(x,y) = 4 then set

– h(x,y) := 0

– h(x+1,y) := h(x+1,y)+1

– h(x�1,y) := h(x�1,y)+1

– h(x,y+1) := h(x,y+1)+1

– h(x,y�1) := h(x,y�1)+1

• apply the update recursively to every

height-4 neighbour

Sandpile CA

avalanche

early stages of adding grains dynamical steady state

Sandpile CA

millions of grains dropped

gr
ai

ns
 p

er
 c

el
l

dynamical steady state

Distribution functions
‣ Measure and histogram quantities in the dynamical

steady state:

‣ number of grains added between avalanche events

‣ avalanche size

‣ Most quantities display power-law behaviour

‣ No fundamental scales in the model

Avalanche distribution

millions of grains dropped

av
al

an
ch

e
siz

e discard data

Avalanche distribution

avalanche size

fra
ct

io
n

f (S) = 0.118S�1.048

Cluster growth model

On

Off
(for all subsequent times)

As yet unassigned

p

1� p

‣ Apply update rule to unassigned cells that have activated
neighbours

On
(for all subsequent times)

Percolation transition
‣ Stationary final configurations on a 400x400 torus

fractal
p = 0.59 pc = 0.59274 p = 0.6 p = 0.7

Percolation transition

‣ Criticality here is not self-organized but instead requires
fine tuning of the growth probability

‣ Continuous phase transition at , where the clusters
have fractal dimension intermediate between 1 and 2

‣ Scale invariance is lost at and

p

pc

p > pc p < pc

Fractal dimension

‣ Bin cell counts in
circular shells

‣ Fit a linear slope on
a log-log plot

N ⇠ RDf

dN ⇠ RDf�1dR

Simple data structure

const size_t halfL = 200;
const size_t L = 2*halfL;
enum cell_t { UNASSIGNED=2, ON=1, OFF=0 };
cell_t grid[L][L];

void initialize_grid(void)
{
 for (size_t i = 0; i < L; ++i)
 for (size_t j = 0; j < L; ++j)
 grid[i][j] = UNASSIGNED;
 grid[halfL][halfL] = ON;
}

‣ 3-state grid of cells stored as conventional 2D array

Simple updates

double prob;
void sweep_grid(void)
{
 for (size_t i = 0; i < L; ++i)

 for (size_t j = 0; j < L; ++j)
 if (grid[i][j] == UNASSIGNED and

 (grid[(i+1)%L][j] == ON or
 grid[(L+i-1)%L][j] == ON or
 grid[i][(j+1)%L] == ON or
 grid[i][(L+j-1)%L] == ON))
 grid[i][j] = (Rand() < prob ? ON : OFF);
}

‣ Each sweep scales as

‣ As many as sweeps for the On wavefront to propagate
across the system

L2

L

Redundant data structure

const size_t halfL = 200;
const size_t L = 2*halfL;
enum cell_t { UNASSIGNED = 2, ON = 1, OFF = 0 };
cell_t grid[L][L];

class coord
{ public:

size_t x;
size_t y;
coord(size_t x_, size_t y_) : x(x_), y(y_) {}

};

#include <queue>
using std::queue;
queue<coord> perim;

‣ Trade off memory for algorithmic efficiency

Initialize the perimeter

void initialize_grid(void)
{

for (size_t i = 0; i < L; ++i)
for (size_t j = 0; j < L; ++j)

grid[i][j] = UNASSIGNED;
grid[halfL][halfL] = ON;
perim.push(coord(halfL+1,halfL));
perim.push(coord(halfL-1,halfL));
perim.push(coord(halfL,halfL+1));
perim.push(coord(halfL,halfL-1));

}

Grow the perimeter
double prob;
void sweep_grid(void)
{
 while (!perim.empty())
 {
 const coord c = perim.front(); perim.pop();
 const size_t i = c.x;
 const size_t j = c.y;
 if (grid[i][j] == UNASSIGNED)
 if (Rand() < prob)
 {
 grid[i][j] = ON;
 if (grid[(i+1)%L][j] == UNASSIGNED) perim.push(coord((i+1)%L,j));
 if (grid[(L+i-1)%L][j] == UNASSIGNED) perim.push(coord((L+i-1)%L,j));
 if (grid[i][(j+1)%L] == UNASSIGNED) perim.push(coord(i,(j+1)%L));
 if (grid[i][(L+j-1)%L] == UNASSIGNED) perim.push(coord(i,(L+j-1)%L));
 }
 else
 grid[i][j] = OFF;
 }
}

