
Cellular automata

Phys 750 Lecture 3



Cellular automata
‣ cellular automata system is a grid of cells evolving 

synchronously according to a discrete global clock 

‣ discrete and (usually) finite set of states in each cell 

‣ computation is exact and deterministic (and in some 
cases time-reversible) 

‣ evolution rules are local; e.g., 
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Causal structure
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Synchronous updates

bool alive[100] = {false, true, ...}; 
bool F(bool, bool, bool); // rule prototype

void update(void)
{
   for (int i = 0; i < 100; ++i)
      alive[i] = F( alive[(i+99)%100],
                    alive[i],
                    alive[(i+1)%100] );
}

‣ Take care to avoid polluting the update step 

‣ This single-array implementation conflates the two 
adjacent time steps and is incorrect:



Synchronous updates
#include <algorithm>
using std::swap;

bool buffer1[100] = {false, true, ...};
bool buffer2[100];

bool *current = buffer1, *next = buffer2;
bool F(bool, bool, bool);

void update(void)
{
   for (int i = 0; i < 100; ++i)
      next[i] = F( current[(i+99)%100],
                   current[i],
                   current[(i+1)%100] );
   swap(current,next);
}
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Synchronous updates
#include <algorithm>
using std::swap;
#include <vector>
using std::vector;

// pointer-free implementation
vector<bool> current(100); 
vector<bool> next(100); // two STL containers

void update(void)
{
   for (int i = 0; i < 100; ++i)
      next[i] = F( current[(i+99)%100],
                   current[i],
                   current[(i+1)%100] );
   swap(current,next);
}



Excitable media CA
‣ Discrete model with           possible states in each cell:  
 
 
 

‣ Quiescent cells are excited by their excited neighbours 

‣ Excited cells relax over the course of            time steps    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Excitable media CA
‣ Precise statement of the update rules:

• For the case x

(t)
i

= 0

– if at least one of the neighbours x

(t)
j ⇥=i

is excited, assign x

(t+1)
i

:= E

– otherwise, set x

(t+1)
i

:= 0

• Otherwise, set x
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:= x

(t)�1



Excitable media CA

time
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‣ Localized disturbances propagate away from initial 
perturbation with definite “momentum” 

‣ Completely inelastic collisions: “particles” annihilate

(E � 2)

E = 4



Excitable media CA
square lattice, E = 20



Excitable media CA
‣ Partial analogy with wave propagation—corresponding 

to a pebble dropped in a pond 

‣ Analogy fails in a few important ways: 

‣ unimpeded wavefront never decays at long 
distances 

‣ complete annihilation of colliding excitations 

‣ cannot recover circular symmetry by coarse-graining



Excitable media CA

‣ Failures are a consequence of bad choices at the 
microscopic level: 

‣ update rules should enforce local energy 
conservation if we want global energy conservation 

‣ pay attention to the discretization of space and the 
connectivity of the lattice



Margolus scheme
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‣ Space-filling partition of groups 
of cells, alternating with time 

‣ Each group updated 
independently 

‣ Easy to enforce conservation 
laws, especially number 
conservation 

‣ 1d lattice gas:



Square lattice gas
‣ 4-site Margolus tiling, shifted by 

(1,1) for odd times 

‣ Updates conserve particle number, 
energy, and momentum (along the 
links of the dual lattice)



Square lattice gas
‣ Velocities allowed along only two orthogonal directions 

‣ Leads to many undesirable hidden invariants

momentum conserved independently 
along every line of the dual lattice



Coarse-grained behaviour

‣ Long-distance, long-time behaviour is related 
to Navier-Stokes hydrodynamics but with an 
artificial anisotropy 

‣ Spurious invariants survive coarse graining 

‣ Cured by three-body interactions on the 
triangular lattice



CA generalizations

‣ Arbitrary grids and lattices 

‣ Causal connections beyond nearest neighbour 

‣ Asynchronous updates 

‣ Random/probabilistic updates 

‣ Boundary conditions


